Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T20:23:44.507Z Has data issue: false hasContentIssue false

On the abelianization of derived categories and a negative solution to Rosický’s problem

Published online by Cambridge University Press:  06 November 2012

Silvana Bazzoni
Affiliation:
Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35121 Padova, Italy (email: [email protected])
Jan Šťovíček
Affiliation:
Department of Algebra, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovska 83, 186 75 Praha 8, Czech Republic (email: [email protected])

Abstract

We prove for a large family of rings R that their λ-pure global dimension is greater than one for each infinite regular cardinal λ. This answers in the negative a problem posed by Rosický. The derived categories of such rings then do not satisfy, for any λ, the Adams λ-representability for morphisms. Equivalently, they are examples of well-generated triangulated categories whose λ-abelianization in the sense of Neeman is not a full functor for any λ. In particular, we show that given a compactly generated triangulated category, one may not be able to find a Rosický functor among the λ-abelianization functors.

Type
Research Article
Copyright
Copyright © The Author(s) 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AR94]Adámek, J. and Rosický, J., Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189 (Cambridge University Press, Cambridge, 1994); MR 1294136(95j:18001).CrossRefGoogle Scholar
[Ada71]Adams, J. F., A variant of E. H. Brown’s representability theorem, Topology 10 (1971), 185198; MR 0283788(44#1018).Google Scholar
[AR68]Amdal, I. K. and Ringdal, F., Catégories unisérielles, C. R. Acad. Sci. Paris Sér. A–B 267 (1968), A247A249; MR 0235007(38#3319).Google Scholar
[AF92]Anderson, F. W. and Fuller, K. R., Rings and categories of modules, Graduate Texts in Mathematics, vol. 13, second edition (Springer, New York, 1992); MR 1245487(94i:16001).CrossRefGoogle Scholar
[ARO95]Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36 (Cambridge University Press, Cambridge, 1995); MR 1314422(96c:16015).CrossRefGoogle Scholar
[BBL82a]Baer, D., Brune, H. and Lenzing, H., A homological approach to representations of algebras. I. The wild case, J. Pure Appl. Algebra 24 (1982), 227233; MR 675010(84a:16038b).CrossRefGoogle Scholar
[BBL82b]Baer, D., Brune, H. and Lenzing, H., A homological approach to representations of algebras. II. Tame hereditary algebras, J. Pure Appl. Algebra 26 (1982), 141153; MR 675010(84a:16038b).CrossRefGoogle Scholar
[Bel00]Beligiannis, A., Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), 268361; MR 1754234(2001e:18012).CrossRefGoogle Scholar
[Bou71]Bourbaki, N., Éléments de mathématique. Topologie générale. Chapitres 1 à 4 (Hermann, Paris, 1971); MR 0358652(50#11111).Google Scholar
[BG12]Braun, G. and Göbel, R., Splitting kernels into small summands, Israel J. Math. 188 (2012), 221230.Google Scholar
[Bro62]Brown, E. H. Jr, Cohomology theories, Ann. of Math. (2) 75 (1962), 467484; MR 0138104(25#1551).CrossRefGoogle Scholar
[B{ü}h10]Bühler, T., Exact categories, Expo. Math. 28 (2010), 169; MR 2606234.CrossRefGoogle Scholar
[CK10]Chen, X.-W. and Krause, H., Introduction to coherent sheaves on weighted projective lines, Preprint (2010), arXiv:0911.4473v3.Google Scholar
[CKN01]Christensen, J. D., Keller, B. and Neeman, A., Failure of Brown representability in derived categories, Topology 40 (2001), 13391361; MR 1867248(2003i:16013).Google Scholar
[CF04]Colby, R. R. and Fuller, K. R., Equivalence and duality for module categories (with tilting and cotilting for rings), Cambridge Tracts in Mathematics, vol. 161 (Cambridge University Press, Cambridge, 2004); MR 2048277(2005d:16001).CrossRefGoogle Scholar
[CH68]Crawley, P. and Hales, A. W., The structure of torsion abelian groups given by presentations, Bull. Amer. Math. Soc. 74 (1968), 954956; MR 0232840(38#1163).CrossRefGoogle Scholar
[CH69]Crawley, P. and Hales, A. W., The structure of abelian p-groups given by certain presentations, J. Algebra 12 (1969), 1023; MR 0238947(39#307).Google Scholar
[Fuc73]Fuchs, L., Infinite abelian groups. Volume II, Pure and Applied Mathematics. vol. 36-II (Academic Press, New York, 1973); MR 0349869(50#2362).Google Scholar
[Gab62]Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323448; MR 0232821(38#1144).CrossRefGoogle Scholar
[Gab73]Gabriel, P., Indecomposable representations. II, in Symposia Mathematica, vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971) (Academic Press, London, 1973), 81104; MR 0340377(49#5132).Google Scholar
[GU71]Gabriel, P. and Ulmer, F., Lokal präsentierbare Kategorien, Lecture Notes in Mathematics, vol. 221 (Springer, Berlin, 1971); MR 0327863(48#6205).Google Scholar
[Hil67]Hill, P., On the classification of abelian groups, photocopied manuscript (1967).Google Scholar
[Hil69]Hill, P., A countability condition for primary groups presented by relations of length two, Bull. Amer. Math. Soc. 75 (1969), 780782; MR 0246959(40#228).Google Scholar
[HPS97]Hovey, M., Palmieri, J. H. and Strickland, N. P., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), 1114; MR 1388895(98a:55017).Google Scholar
[JL89]Jensen, C. U. and Lenzing, H., Model-theoretic algebra with particular emphasis on fields, rings, modules, Algebra, Logic and Applications, vol. 2 (Gordon and Breach Science Publishers, New York, 1989); MR 1057608(91m:03038).Google Scholar
[Kap66]Kaplansky, I., The homological dimension of a quotient field, Nagoya Math. J. 27 (1966), 139142; MR 0194454(33#2664).CrossRefGoogle Scholar
[Kel90]Keller, B., Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379417; MR 1052551(91h:18006).CrossRefGoogle Scholar
[Ker96]Kerner, O., Representations of wild quivers, in Representation theory of algebras and related topics (Mexico City, 1994), CMS Conference Proceedings, vol. 19 (American Mathematical Society, Providence, RI, 1996), 65107; MR 1388560(97e:16028).Google Scholar
[KL06]Klingler, L. and Levy, L. S., Representation type of commutative Noetherian rings (introduction), in Algebras, rings and their representations (World Scientific, Hackensack, NJ, 2006), 113151; MR 2234304(2007k:13036).CrossRefGoogle Scholar
[Kra10]Krause, H., Localization theory for triangulated categories, in Triangulated categories, London Mathematical Society Lecture Note Series, vol. 375 (Cambridge University Press, Cambridge, 2010), 161235; MR 2681709.Google Scholar
[Kul52]Kulikov, L. Y., Generalized primary groups. I, Trudy Moskov. Mat. Obšč. 1 (1952), 247326; MR 0049188(14,132d).Google Scholar
[Len83]Lenzing, H., Homological transfer from finitely presented to infinite modules, in Abelian group theory (Honolulu, Hawaii, 1983), Lecture Notes in Mathematics, vol. 1006 (Springer, Berlin, 1983), 734761; MR 722664(85f:16034).Google Scholar
[Len84]Lenzing, H., The pure-projective dimension of torsion-free divisible modules, Comm. Algebra 12 (1984), 649662; MR 735139(86h:16028).CrossRefGoogle Scholar
[Min68]Mines, R., A family of functors defined on generalized primary groups, Pacific J. Math. 26 (1968), 349360; MR 0238958(39#318).CrossRefGoogle Scholar
[Mur10]Muro, F., Representability of cohomology theories, Talk at the Joint Mathematical Conference CSASC 2010, Prague, available at http://www.personal.us.es/fmuro/praha.pdf.Google Scholar
[Nee97]Neeman, A., On a theorem of Brown and Adams, Topology 36 (1997), 619645; MR 1422428(98e:18007).Google Scholar
[Nee01]Neeman, A., Triangulated categories, Annals of Mathematics Studies, vol. 148 (Princeton University Press, Princeton, NJ, 2001); MR 1812507(2001k:18010).CrossRefGoogle Scholar
[Nee09]Neeman, A., Brown representability follows from Rosický’s theorem, J. Topol. 2 (2009), 262276; MR 2529296(2010j:18022).Google Scholar
[Nun63]Nunke, R. J., Purity and subfunctors of the identity, in Topics in abelian groups (Proceedings of the Symposium at New Mexico State University, 1962) (Scott, Foresman and Co., Chicago, IL, 1963), 121171; MR 0169913(30#156).Google Scholar
[Nun67]Nunke, R. J., Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182212; MR 0218452(36#1538).CrossRefGoogle Scholar
[Oso73]Osofsky, B. L., Homological dimensions of modules, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, vol. 12 (American Mathematical Society, Providence, RI, 1973); MR 0447210(56#5525).Google Scholar
[RM11]Raventós Morera, O., Adams representability in triangulated categories, PhD thesis, University of Barcelona (2011).Google Scholar
[Ric89]Rickard, J., Morita theory for derived categories, J. Lond. Math. Soc. (2) 39 (1989), 436456; MR 1002456(91b:18012).Google Scholar
[Rin84]Ringel, C. M., Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099 (Springer, Berlin, 1984); MR 774589(87f:16027).Google Scholar
[Ros05]Rosický, J., Generalized Brown representability in homotopy categories, Theory Appl. Categ. 14 (2005), 451479 (revised version available at arXiv:math/0506168v3); MR 2211427(2007c:18009).Google Scholar
[Ros08]Rosický, J., Erratum: Generalized Brown representability in homotopy categories, Theory Appl. Categ. 20 (2008), 1824; MR 2369094(2008k:18016).Google Scholar
[Ros09]Rosický, J., Generalized purity, definability and Brown representability, Talk at the Some Trends in Algebra conference 2009, Prague, available at http://www.math.muni.cz/∼rosicky/papers/praha.pdf.Google Scholar
[Sal80]Salce, L., Struttura dei p-gruppi abeliani, Quad. dell’Unione Matematica Italiana, vol. 18 (Pitagora, Bologna, 1980).Google Scholar
[Trl12]Trlifaj, J., Brown representability test problems in locally Grothendieck categories, Appl. Categ. Structures 20 (2012), 97102.Google Scholar
[vR12]van Roosmalen, A.-C., Abelian hereditary fractionally Calabi–Yau categories, Int. Math. Res. Notices 2012 (2012), 27082750, doi:10.1093/imrn/rnr118.Google Scholar
[Wal74]Walker, E. A., The groups P β, in Symposia Mathematica, vol. XIII (Convegno di Gruppi Abeliani, INDAM, Rome, 1974) (Academic Press, London, 1974), 245255; MR 0364497(51#751).Google Scholar