Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T16:04:24.710Z Has data issue: false hasContentIssue false

On ramification filtrations and p-adic differential equations, II: mixed characteristic case

Published online by Cambridge University Press:  30 November 2011

Liang Xiao*
Affiliation:
Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a complete discrete valuation field of mixed characteristic (0,p), with possibly imperfect residue field. We prove a Hasse–Arf theorem for the arithmetic ramification filtrations on GK, except possibly in the absolutely unramified and non-logarithmic case, or the p=2 and logarithmic case. As an application, we obtain a Hasse–Arf theorem for filtrations on finite flat group schemes over 𝒪K.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[AM04]Abbes, A. and Mokrane, A., Sous-groupes canoniques et cycles évanescents p-adiques pour les variétés abéliennes, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 117162.CrossRefGoogle Scholar
[AS02]Abbes, A. and Saito, T., Ramification of local fields with imperfect residue fields, Amer. J. Math. 124 (2002), 879920.CrossRefGoogle Scholar
[AS03]Abbes, A. and Saito, T., Ramification of local fields with imperfect residue fields, II, Doc. Math. Extra Vol. (2003), 572 (Kazuya Kato’s fiftieth birthday).Google Scholar
[And07]André, Y., Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité, Invent. Math. 170 (2007), 147198.CrossRefGoogle Scholar
[Ber90]Berkovich, V. G., Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33 (American Mathematical Society, Providence, RI, 1990).Google Scholar
[Bor04]Borger, J. M., Conductors and the moduli of residual perfection, Math. Ann. 329 (2004), 130.CrossRefGoogle Scholar
[CD94]Christol, G. and Dwork, B., Modules différentiels sur des couronnes, Ann. Inst. Fourier (Grenoble) 44 (1994), 663701.CrossRefGoogle Scholar
[CM00]Christol, G. and Mebkhout, Z., Sur le théorème de l’indice des équations différentielles p-adiques. III, Ann. of Math. (2) 151 (2000), 385457.CrossRefGoogle Scholar
[CR94]Christol, G. and Robba, P., Équations différentielles p-adiques. Applications aux sommes exponentielles, Actualités Mathématiques (Hermann, Paris, 1994).Google Scholar
[Hat06]Hattori, S., Ramification of a finite flat group scheme over a local field, J. Number Theory 118 (2006), 145154.CrossRefGoogle Scholar
[Hat08]Hattori, S., Tame characters and ramification of finite flat group schemes, J. Number Theory 128 (2008), 10911108.CrossRefGoogle Scholar
[Kat89]Kato, K., Logarithmic structures of Fontaine–Illusie, in Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) (Johns Hopkins University Press, Baltimore, MD, 1989), 191224.Google Scholar
[KS04]Kato, K. and Saito, T., On the conductor formula of Bloch, Publ. Math. Inst. Hautes Études Sci. 100 (2004), 5151.CrossRefGoogle Scholar
[Ked05]Kedlaya, K. S., Local monodromy of p-adic differential equations: an overview, Int. J. Number Theory 1 (2005), 109154.CrossRefGoogle Scholar
[Ked07]Kedlaya, K. S., Swan conductors for p-adic differential modules. I. A local construction, Algebra Number Theory 1 (2007), 269300.CrossRefGoogle Scholar
[Ked10]Kedlaya, K. S., p-adic differential equations, Cambridge Studies in Advanced Mathematics, vol. 125 (Cambridge University Press, Cambridge, 2010).CrossRefGoogle Scholar
[Ked11]Kedlaya, K. S., Swan conductors for p-adic differential modules, II: Global variation, J. Inst. Math. Jussieu 10 (2011), 191224.CrossRefGoogle Scholar
[KX10]Kedlaya, K. S. and Xiao, L., Differential modules on p-adic polyannuli, J. Inst. Math. Jussieu 9 (2010), 155201; Erratum, J. Inst. Math. Jussieu 9 (2010), 669–671.CrossRefGoogle Scholar
[Sai]Saito, T., Ramification of local fields with imperfect residue fields, III, Math. Ann., to appear, doi:10.1007/s00208-011-0652-5.CrossRefGoogle Scholar
[Ser79]Serre, J.-P., Local fields, Graduate Texts in Mathematics, vol. 67 (Springer, New York, 1979).CrossRefGoogle Scholar
[Swe68]Sweedler, M. E., Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401410.CrossRefGoogle Scholar
[Xia10]Xiao, L., On ramification filtrations and p-adic differential equations, I: equal characteristic case, Algebraic Number Theory 4 (2010), 9691027.CrossRefGoogle Scholar