Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T20:48:56.410Z Has data issue: false hasContentIssue false

On quasi-classical limits of DQ-algebroids

Published online by Cambridge University Press:  19 January 2017

Paul Bressler
Affiliation:
Departamento de Matemáticas, Universidad de Los Andes, Bogotá, Colombia email [email protected]
Alexander Gorokhovsky
Affiliation:
Department of Mathematics, UCB 395, University of Colorado, Boulder, CO 80309-0395, USA email [email protected]
Ryszard Nest
Affiliation:
Department of Mathematics, Copenhagen University, Universitetsparken 5, 2100 Copenhagen, Denmark email [email protected]
Boris Tsygan
Affiliation:
Department of Mathematics, Northwestern University, Evanston, IL 60208-2730, USA email [email protected]

Abstract

We determine the additional structure which arises on the classical limit of a DQ-algebroid.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranovsky, V., Ginzburg, V., Kaledin, D. and Pecharich, J., Quantization of line bundles on Lagrangian subvarieties , Selecta Math. (N.S.) 22 (2016), 125.Google Scholar
Bertelson, M., Cahen, M. and Gutt, S., Equivalence of star products. Geometry and physics , Classical Quantum Gravity 14 (1997), A93A107.Google Scholar
Bressler, P., Gorokhovsky, A., Nest, R. and Tsygan, B., Deformation quantization of gerbes , Adv. Math. 214 (2007), 230266.CrossRefGoogle Scholar
Bressler, P., Gorokhovsky, A., Nest, R. and Tsygan, B., Formality theorem for gerbes , Adv. Math. 273 (2015), 215241.Google Scholar
Brylinski, J.-L., Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, vol. 107 (Birkhäuser, Boston, MA, 1993).CrossRefGoogle Scholar
Bursztyn, H., Poisson vector bundles, contravariant connections and deformations , Progr. Theoret. Phys. Suppl. (2001), 2637; Noncommutative geometry and string theory (Yokohama, 2001).Google Scholar
Bursztyn, H., Semiclassical geometry of quantum line bundles and Morita equivalence of star products , Int. Math. Res. Not. IMRN 2002 (2002), 821846.CrossRefGoogle Scholar
Bursztyn, H. and Waldmann, S., Bimodule deformations, Picard groups and contravariant connections , K-Theory 31 (2004), 137.Google Scholar
Deligne, P., La formule de dualite globale (Springer, Berlin, 1973), 481587.Google Scholar
Fischer, H. R. and Williams, F. L., Complex-foliated structures. I. Cohomology of the Dolbeault–Kostant complexes , Trans. Amer. Math. Soc. 252 (1979), 163195.CrossRefGoogle Scholar
Kashiwara, M., Quantization of contact manifolds , Publ. Res. Inst. Math. Sci. 32 (1996), 17.CrossRefGoogle Scholar
Kashiwara, M. and Schapira, P., Deformation quantization modules, Astérisque, vol. 345 (Société Mathématique de France, 2012).Google Scholar
Kontsevich, M., Deformation quantization of algebraic varieties , Lett. Math. Phys. 56 (2001), 271294; Euro Conférence Moshé Flato 2000, Part III (Dijon).CrossRefGoogle Scholar
Kostant, B., Quantization and unitary representations. I. Prequantization , in Lectures in modern analysis and applications, III, Lecture Notes in Mathematics, vol. 170 (Springer, Berlin, 1970), 87208.Google Scholar
Mackenzie, K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213 (Cambridge University Press, Cambridge, 2005).Google Scholar
Milne, J. S., Gerbes and abelian motives, Preprint (2003), arXiv:math/0301304.Google Scholar
Rawnsley, J. H., On the cohomology groups of a polarisation and diagonal quantisation , Trans. Amer. Math. Soc. 230 (1977), 235255.Google Scholar
Vey, J., Déformation du crochet de Poisson sur une variété symplectique , Comment. Math. Helv. 50 (1975), 421454.Google Scholar