Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T09:00:40.120Z Has data issue: false hasContentIssue false

On discrete homology of a free pro-$p$-group

Published online by Cambridge University Press:  07 September 2018

Sergei O. Ivanov
Affiliation:
Laboratory of Modern Algebra and Applications, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia email [email protected]
Roman Mikhailov
Affiliation:
Laboratory of Modern Algebra and Applications, St. Petersburg State University, 14th Line, 29b, Saint Petersburg, 199178 Russia St. Petersburg Department of Steklov Mathematical Institute, Russia email [email protected]

Abstract

For a prime $p$, let $\hat{F}_{p}$ be a finitely generated free pro-$p$-group of rank at least $2$. We show that the second discrete homology group $H_{2}(\hat{F}_{p},\mathbb{Z}/p)$ is an uncountable $\mathbb{Z}/p$-vector space. This answers a problem of A. K. Bousfield.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bousfield, A. K., Homological localization towers for groups and 𝜋-modules , Mem. Amer. Math. Soc. 186 (1977).Google Scholar
Bousfield, A. K., On the p-adic completions of nonnilpotent spaces , Trans. Amer. Math. Soc. 331 (1992), 335359.Google Scholar
Brown, K. S. and Dror, E., The Artin–Rees property and homology , Israel J. Math. 22 (1975), 93109.Google Scholar
Fernandez-Alcober, G. A., Kazatchkov, I. V., Remeslennikov, V. N. and Symonds, P., Comparison of the discrete and continuous cohomology groups of a pro-p-group , St. Petersburg Math. J. 19 (2008), 961973.Google Scholar
Grigorchuk, R. and Kravchenko, R., On the lattice of subgroups of the lamplighter group , Internat. J. Algebra Comput. 24 (2014), 837877.Google Scholar
Ivanov, S. O. and Mikhailov, R., On a problem of Bousfield for metabelian groups , Adv. Math. 290 (2016), 552589.Google Scholar
Ivanov, S. O. and Mikhailov, R., A finite $\mathbb{Q}$ -bad space, Preprint (2017), arXiv:1708.00282.Google Scholar
Klopsch, B., Abstract quotients of profinite groups, after Nikolov and Segal, Preprint (2016), arXiv:1601.00343.Google Scholar
Kropholler, P. H., A note on the cohomology of metabelian groups , Math. Proc. Cambridge Philos. Soc. 98 (1985), 437445.Google Scholar
Nikolov, N., Algebraic properties of profinite groups, Preprint (2011), arXiv:1108.5130.Google Scholar
Nikolov, N. and Segal, D., On finitely generated profinite groups, I: Strong completeness and uniform bounds , Ann. of Math. (2) 165 (2007), 171238.Google Scholar
Ribes, L. and Zalesskii, P., Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 40 (Springer, Berlin, 2000).Google Scholar
Serre, J.-P., Galois cohomology, Springer Monographs in Mathematics (Springer, Berlin, 2002).Google Scholar