Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T13:27:26.834Z Has data issue: false hasContentIssue false

On anticyclotomic μ-invariants of modular forms

Published online by Cambridge University Press:  27 July 2011

Robert Pollack
Affiliation:
Department of Mathematics, Boston University, Boston, MA, USA (email: [email protected])
Tom Weston
Affiliation:
Department of Mathematics, University of Massachusetts, Amherst, MA, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the μ-part of the main conjecture for modular forms along the anticyclotomic Zp-extension of a quadratic imaginary field. Our proof consists of first giving an explicit formula for the algebraic μ-invariant, and then using results of Ribet and Takahashi showing that our formula agrees with Vatsal’s formula for the analytic μ-invariant.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[AU96]Abbes, A. and Ullmo, E., Ap̀ropos de la conjecture de Manin pour les courbes elliptiques modulaires, Compositio Math. 103 (1996), 269286.Google Scholar
[ARS06]Agashe, A., Ribet, K. and Stein, W., The modular degree, congruence primes and multiplicity one, Pure Appl. Math. Q. 2 (2006), 617636.CrossRefGoogle Scholar
[BD96]Bertolini, M. and Darmon, H., Heegner points on Mumford–Tate curves, Invent. Math. 126 (1996), 413456.CrossRefGoogle Scholar
[BD98]Bertolini, M. and Darmon, H., p-adic L-functions, and the Cerednik–Drinfeld uniformization, Invent. Math. 131 (1998), 453491.CrossRefGoogle Scholar
[BD05]Bertolini, M. and Darmon, H., Iwasawa’s main conjecture for elliptic curves over anticyclotomic Zp-extensions, Ann. of Math. (2) 162 (2005), 164.CrossRefGoogle Scholar
[Car91]Carayol, H., Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston) (American Mathematical Society, Providence, RI, 1991), 213237.Google Scholar
[CK04]Cojocaru, A. and Kani, E., The modular degree and the congruence number of a weight 2 cusp form, Acta Arith. 114 (2004), 159167.CrossRefGoogle Scholar
[Cor02]Cornut, C., Mazur’s conjecture on higher Heegner points, Invent. Math. 148 (2002), 495523.CrossRefGoogle Scholar
[DDT95]Darmon, H., Diamond, F. and Taylor, R., Fermat’s last theorem, Current Developments in Mathematics, vol. 1 (International Press, Cambridge, MA, 1995), 1157.Google Scholar
[DI08]Darmon, H. and Iovita, A., The anticyclotomic main conjecture for supersingular elliptic curves, J. Inst. Math. Jussieu 7 (2008), 291325.CrossRefGoogle Scholar
[EPW06]Emerton, M., Pollack, R. and Weston, T., Variation of Iwasawa invariants in Hida families, Invent. Math. 163 (2006), 523580.CrossRefGoogle Scholar
[Fin06]Finis, T., The μ-invariant of anticyclotomic L-functions of imaginary quadratic fields, J. Reine Angew. Math. 596 (2006), 131152.Google Scholar
[Gre89]Greenberg, R., Iwasawa theory for p-adic representations, Advanced Studies in Pure Mathematics, vol. 17 (Academic Press, Boston, MA, 1989), 97137.Google Scholar
[Gre99]Greenberg, R., Iwasawa theory for elliptic curves, Lecture Notes in Math. 1716 (1999), 51144.CrossRefGoogle Scholar
[GV00]Greenberg, R. and Vatsal, V., On the Iwasawa invariants of elliptic curves, Invent. Math. 142 (2000), 1763.CrossRefGoogle Scholar
[Gro87]Gross, B., Heights and the special values of L-series, in Number theory (Montreal, 1985), CMS Conf. Proc., vol. 7 (American Mathematical Society, Providence, RI, 1987), 115187.Google Scholar
[Gro72]Grothendieck, A., Groupes de monodromie en géométrie algébrique. I, in Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Mathematics, vol. 288 (Springer, Berlin–New York, 1972) (with M. Raynaud and D. S. Rim).Google Scholar
[Hel07]Helm, D., On maps between modular Jacobians and Jacobians of Shimura curves, Israel J. Math. 160 (2007), 61117.CrossRefGoogle Scholar
[Hid88]Hida, H., Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math. 110 (1988), 323382.CrossRefGoogle Scholar
[IP06]Iovita, A. and Pollack, R., Iwasawa theory of elliptic curves at supersingular primes overZp-extensions of number fields, J. Reine Angew. Math. 598 (2006), 71103.Google Scholar
[Kha03]Khare, C., On isomorphisms between deformation rings and Hecke rings, Invent. Math. 154 (2003), 199222.CrossRefGoogle Scholar
[Kim]Kim, B.-D., The plus/minus Selmer groups for supersingular primes and the Selmer groups, Preprint.Google Scholar
[Kob03]Kobayashi, S., Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), 136.CrossRefGoogle Scholar
[Koh01]Kohel, D., Hecke module structure of quaternions, in Class field theory—its centenary and prospect (Tokyo, 1998), Advanced Studies in Pure Mathematics, vol. 30 (Mathematical Society, Japan, Tokyo, 2001), 171195.Google Scholar
[Pol03]Pollack, R., On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), 523558.CrossRefGoogle Scholar
[Rib90]Ribet, K., On modular representations of arising from modular forms, Invent. Math. 100 (1990), 431476.CrossRefGoogle Scholar
[RT97]Ribet, K. and Takahashi, S., Parameterizations of elliptic curves by Shimura curves and by classical modular curves, in Elliptic curves and modular forms (Washington, DC, 1996), Proc. Natl. Acad. Sci. USA 94 (1997), 1111011114.CrossRefGoogle Scholar
[Tak01]Takahashi, S., Degrees of parameterizations of elliptic curves by Shimura curves, J. Number Theory 90 (2001), 7488.CrossRefGoogle Scholar
[Vat99]Vatsal, V., Canonical periods and congruence formulae, Duke Math. J. 98 (1999), 397419.CrossRefGoogle Scholar
[Vat02]Vatsal, V., Uniform distribution of Heegner points, Invent. Math. 148 (2002), 146.CrossRefGoogle Scholar
[Vat03]Vatsal, V., Special values of anticyclotomic L-functions, Duke Math. J. 116 (2003), 219261.CrossRefGoogle Scholar
[Wes05]Weston, T., Iwasawa invariants of Galois deformations, Manuscripta Math. 118 (2005), 161180.CrossRefGoogle Scholar
[Wil95]Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443551.CrossRefGoogle Scholar