Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T20:54:04.376Z Has data issue: false hasContentIssue false

Number of Jordan blocks of the maximal size for local monodromies

Published online by Cambridge University Press:  11 February 2014

Alexandru Dimca
Affiliation:
Université Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice, France email [email protected]
Morihiko Saito
Affiliation:
RIMS Kyoto University, Kyoto 606-8502, Japan email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove formulas for the number of Jordan blocks of the maximal size for local monodromies of one-parameter degenerations of complex algebraic varieties where the bound of the size comes from the monodromy theorem. In the case when the general fibers are smooth and compact, the proof calculates some part of the weight spectral sequence of the limit mixed Hodge structure of Steenbrink. In the singular case, we can prove a similar formula for the monodromy on the cohomology with compact supports, but not on the usual cohomology. We also show that the number can really depend on the position of singular points in the embedded resolution, even in the isolated singularity case, and hence there are no simple combinatorial formulas using the embedded resolution in general.

Type
Research Article
Copyright
© The Author(s) 2013 

References

Artal Bartolo, E., Forme de Jordan de la monodromie des singularités superisolées de surfaces, Mem. Amer. Math. Soc. 109 (1994).Google Scholar
Artal Bartolo, E., Sur les couples de Zariski, J. Algebraic Geom. 3 (1994), 223247.Google Scholar
Artal Bartolo, E. and Carmona, J., Zariski pairs, fundamental groups and Alexander polynomials, J. Math. Soc. Japan 50 (1998), 521543.Google Scholar
Artal Bartolo, E., Luengo, I. and Melle Hernández, A., Superisolated surface singularities, in Singularities and computer algebra, London Mathematical Society Lecture Note Series, vol. 324 (Cambridge University Press, Cambridge, 2006), 1339.Google Scholar
Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982).Google Scholar
Brieskorn, E., Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103161.Google Scholar
Budur, N. and Saito, M., Jumping coefficients and spectrum of a hyperplane arrangement, Math. Ann. 347 (2010), 545579.Google Scholar
Deligne, P., Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 558.Google Scholar
Deligne, P., Le formalisme des cycles évanescents, in SGA7 XIII and XIV, Lecture Notes in Mathematics, vol. 340 (Springer, Berlin, 1973), 82115; 116–164.Google Scholar
Deligne, P., Théorie de Hodge III, Publ. Math. Inst. Hautes Études Sci. 44 (1974), 577.Google Scholar
Denef, J. and Loeser, F., Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), 505537.Google Scholar
Dimca, A. and Saito, M., Some consequences of perversity of vanishing cycles, Ann. Inst. Fourier (Grenoble) 54 (2004), 17691792.Google Scholar
García López, R. and Némethi, A., On the monodromy at infinity of a polynomial map, Compositio Math. 100 (1996), 205231.Google Scholar
Guillén, F. and Navarro Aznar, V., Sur le théorème local des cycles invariants, Duke Math. J. 61 (1990), 133155.Google Scholar
Guillén, F., Navarro Aznar, V., Pascual Gainza, P. and Puerta, F., Hyperrésolutions cubiques et descente cohomologique, Lecture Notes in Mathematics, vol. 1335 (Springer, Berlin, 1988).Google Scholar
Guseĭn-Zade, S. M., Luengo, I. and Melle-Hernández, A., Partial resolutions and the zeta-function of a singularity, Comment. Math. Helv. 72 (1997), 244256.Google Scholar
Libgober, A., Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), 833851.Google Scholar
Luengo, I., The $\mu $-constant stratum is not smooth, Invent. Math. 90 (1987), 139152.CrossRefGoogle Scholar
Luengo, I. and Melle-Hernández, A., A formula for the Milnor number, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 14731478.Google Scholar
Martín-Morales, J., Embedded $\mathbf{Q} $-resolutions for Yomdin–Lê surface singularities, Israel J. Math., to appear, arXiv:1206.0454v1.Google Scholar
Matsui, Y. and Takeuchi, K., On the sizes of the Jordan blocks of monodromies at infinity, Preprint (2012), arXiv:1202.5077.Google Scholar
Melle-Hernández, A., Milnor numbers for surface singularities, Israel J. Math. 115 (2000), 2950.Google Scholar
Némethi, A. and Steenbrink, J. H. M., Spectral pairs, mixed Hodge modules, and series of plane curve singularities, New York J. Math. 1 (1994/95), 149177.Google Scholar
Saito, M., Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ. 24 (1988), 849995.Google Scholar
Saito, M., Mixed Hodge modules, Publ. RIMS, Kyoto Univ. 26 (1990), 221333.Google Scholar
Saito, M., Decomposition theorem for proper Kähler morphisms, Tohoku Math. J. 42 (1990), 127147.Google Scholar
Saito, M., On Steenbrink’s conjecture, Math. Ann. 289 (1991), 703716.Google Scholar
Saito, M., Bernstein–Sato polynomials of hyperplane arrangements, Preprint (2006), arXiv:math/0602527.Google Scholar
Saito, M. and Zucker, S., The kernel spectral sequence of vanishing cycles, Duke Math. J. 61 (1990), 329339.Google Scholar
Siersma, D., The monodromy of a series of hypersurface singularities, Comment. Math. Helv. 65 (1990), 181197.Google Scholar
Steenbrink, J. H. M., Limits of Hodge structures, Invent. Math. 31 (1976), 229257.Google Scholar
Steenbrink, J. H. M., Mixed Hodge structure on the vanishing cohomology, in Real and complex singularities (Sijthoff and Noordhoff, Alphen aan den Rijn, 1977), 525563.Google Scholar
Steenbrink, J. H. M., The spectrum of hypersurface singularities, Astérisque 179–180 (1989), 163184.Google Scholar
Steenbrink, J. H. M. and Zucker, S., Variation of mixed Hodge structure I, Invent. Math. 80 (1985), 489542.Google Scholar
Stevens, J., On the $\mu $-constant stratum and the $V$-filtration: an example, Math. Z. 201 (1989), 139144.Google Scholar
Yomdin, Y. N., Complex surfaces with a one-dimensional set of singularities, Sib. Math. J. 15 (1975), 748762.Google Scholar
Zariski, O., On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305328.Google Scholar