Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T03:13:03.490Z Has data issue: false hasContentIssue false

Nonsolvable number fields ramified only at 3 and 5

Published online by Cambridge University Press:  15 February 2011

Lassina Dembélé
Affiliation:
Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK (email: [email protected])
Matthew Greenberg
Affiliation:
University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4 (email: [email protected])
John Voight
Affiliation:
Department of Mathematics and Statistics, University of Vermont, 16 Colchester Ave, Burlington, VT 05401, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For p=3 and p=5, we exhibit a finite nonsolvable extension of ℚ which is ramified only at p, proving in the affirmative a conjecture of Gross. Our construction involves explicit computations with Hilbert modular forms.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[1]Bosma, W., Cannon, J. and Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235265.CrossRefGoogle Scholar
[2]Bosman, J., A polynomial with Galois group SL2(𝔽16), LMS J. Comput. Math. 10 (2007), 378388.Google Scholar
[3]Brueggeman, S., The nonexistence of certain Galois extensions unramified outside 5, J. Number Theory 75 (1999), 4752.CrossRefGoogle Scholar
[4]Brueggeman, S., Septic number fields which are ramified only at one small prime, J. Symbolic Comput. 31 (2001), 549555.CrossRefGoogle Scholar
[5]Brueggeman, S., The nonexistence of certain nonsolvable Galois extensions of number fields of small degree, Int. J. Number Theory 1 (2005), 155160.CrossRefGoogle Scholar
[6]Buzzard, K., Diamond, F. and Jarvis, F., On Serre’s conjecture for mod   Galois representations over totally real fields, Preprint, arXiv:0810.2106v5, Duke Math. J., to appear.Google Scholar
[7]Carayol, H., Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), 409468.CrossRefGoogle Scholar
[8]Cardona, G. and Quer, J., Field of moduli and field of definition for curves of genus 2, in Computational aspects of algebraic curves, Lecture Notes Series on Computing, vol. 13 (World Scientific, Hackensack, NJ, 2005), 7183.CrossRefGoogle Scholar
[9]Cremona, J. and Lingham, M., Finding all elliptic curves with good reduction outside a given set of primes, Expo. Math. 16 (2007), 303312.CrossRefGoogle Scholar
[10]Dembélé, L., Explicit computations of Hilbert modular forms on , Expo. Math. 14 (2005), 457466.Google Scholar
[11]Dembélé, L., A non-solvable Galois extension of ℚ ramified at 2 only, C. R. Math. Acad. Sci. Paris 347 (2009), 111116.Google Scholar
[12]Dickson, L. E., Linear groups: with an exposition of the Galois field theory (Dover, New York, 1958).Google Scholar
[13]Elkies, N., Explicit modular towers, in Proceedings of the thirty-fifth annual Allerton conference on communication, control and computing, Urbana, IL, 1997, eds T. Başar and A. Vardy (University of Illinois at Urbana-Champaign, 1998), 23–32.Google Scholar
[14]Elkies, N., Shimura curve computations, in Algorithmic number theory, Portland, OR, 1998, Lecture Notes in Computer Science, vol. 1423 (Springer, Berlin, 1998), 147.Google Scholar
[15]Ellenberg, J., Serre’s conjecture over 𝔽9, Ann. of Math. (2) 161 (2005), 11111142.CrossRefGoogle Scholar
[16]Fontaine, J.-M., Il n’y a pas de variété abélienne sur ℤ, Invent. Math. 81 (1985), 515538.Google Scholar
[17]Gérardin, P. and Labesse, J. P., The solution of a base change problem for GL(2) (following Langlands, Saito, Shintani), in Automorphic forms, representations, and L-functions, Proceedings of Symposia in Pure Mathematics, vol. 33 (American Mathematical Society, Providence, RI, 1979).Google Scholar
[18]Gorenstein, D., Lyons, R. and Solomon, R., The classification of the finite simple groups, Number 2, Mathematical Surveys and Monographs, vol. 40.2 (American Mathematical Society, Providence, RI, 1996).Google Scholar
[19]Greenberg, M. and Voight, J., Computing systems of Hecke eigenvalues associated to Hilbert modular forms, Math. Comp., to appear.Google Scholar
[20]Gross, B., Modular forms (mod p) and Galois representations, Int. Math. Res. Not. IMRN 16 (1998), 865875.CrossRefGoogle Scholar
[21]Gross, B., Algebraic modular forms, Israel J. Math. 113 (1999), 6193.CrossRefGoogle Scholar
[22]Hajir, F. and Maire, C., Tamely ramified towers and discriminant bounds for number fields, Compositio. Math. 128 (2001), 3553.CrossRefGoogle Scholar
[23]Hajir, F. and Maire, C., Tamely ramified towers and discriminant bounds for number fields. II, J. Symbolic Comput. 33 (2002), 415423.CrossRefGoogle Scholar
[24]Hida, H., On abelian varieties with complex multiplication as factors of the Jacobians of Shimura curves, Amer. J. Math. 103 (1981), 727776.CrossRefGoogle Scholar
[25]Jarvis, F., Mazur’s principle for totally real fields of odd degree, Compositio Math. 116 (1999), 3979.CrossRefGoogle Scholar
[26]Jones, J., Tables of number fields with prescribed ramification, http://hobbes.la.asu.edu/NFDB.Google Scholar
[27]Jones, J. and Roberts, D., Sextic number fields with discriminant (−1)j2a3b, in Number theory, Ottawa, ON, 1996, CRM Proceedings & Lecture Notes, vol. 19 (American Mathematical Society, Providence, RI, 1999), 141172.Google Scholar
[28]Khare, C. and Wintenberger, J.-P., On Serre’s conjecture for 2-dimensional mod p representations of , Ann. of Math. (2) 169 (2009), 229253.Google Scholar
[29]Knapp, A., Elliptic curves, Mathematical Notes, vol. 40 (Princeton University Press, Princeton, NJ, 1992).Google Scholar
[30]Lansky, J. and Pollack, D., Hecke algebras and automorphic forms, Compositio Math. 130 (2002), 2148.Google Scholar
[31]Lesseni, S., Decic number fields ramified only at one small prime, Preprint,http://www.math.unicaen.fr/∼lesseni/PAGEWEB/sujet.ps, Int. J. Number Theory, submitted.Google Scholar
[32]Lesseni, S., The non-existence of nonsolvable octic number fields ramified only at one small prime, Math. Comp. 75 (2006), 15191526.Google Scholar
[33]Lesseni, S., Nonsolvable nonic number fields ramified only at one small prime, J. Théor. Nombres Bordeaux 18 (2006), 617625.CrossRefGoogle Scholar
[34]Martinet, J., Petits discriminants des corps de nombres, in Journée arithmetiques 1980, Exeter, 13–19 April 1980, London Mathematical Society Lecture Note Series, vol. 56 (Cambridge University Press, Cambridge, 1982), 151193.Google Scholar
[35]Mazur, B. and Wiles, A., Class fields of abelian extensions of ℚ, Invent. Math. 76 (1984), 179330.Google Scholar
[36]Moon, H., Finiteness results on certain mod p Galois representations, J. Number Theory 84 (2000), 156165.CrossRefGoogle Scholar
[37]Odlyzko, A. M., Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, J. Théor. Nombres Bordeaux 2 (1990), 119141.Google Scholar
[38]Roberts, D. P., Nonsolvable polynomials with field discriminant 5A, Preprint, http://cda.morris.umn.edu/∼roberts/research/five.pdf, Int. J. Number Theory, to appear.Google Scholar
[39]Schoof, R., Abelian varieties over cyclotomic fields with good reduction everywhere, Math. Ann. 325 (2003), 413448.CrossRefGoogle Scholar
[40]Serre, J.-P., Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer], in Séminaire Bourbaki, 24e année (1971/1972), exp. no. 416, Lecture Notes in Mathematics, vol. 317 (Springer, Berlin, 1973), 319338.CrossRefGoogle Scholar
[41]Serre, J.-P., Sur les représentations modulaires de degré 2 de , Duke Math. J. 54 (1987), 197230.CrossRefGoogle Scholar
[42]Serre, J.-P., Abelian -adic representations and elliptic curves, Research Notes in Mathematics, vol. 7 (A. K. Peters, Wellesley, MA, 1997).Google Scholar
[43]Serre, J.-P., Un complément à la Note de Lassina Dembélé. A non-solvable Galois extension of Q ramified at 2 only, C. R. Math. Acad. Sci. Paris 347 (2009), 117118.CrossRefGoogle Scholar
[44]Shepherd-Barron, N. I. and Taylor, R., mod 2 and mod 5 icosahedral representations, J. Amer. Math. Soc. 10 (1997), 283298.Google Scholar
[45]Shimura, G., Construction of class fields and zeta functions of algebraic curves, Ann. of Math. (2) 85 (1967), 58159.Google Scholar
[46]Shimura, G., The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637679.Google Scholar
[47]Skinner, C. M. and Wiles, A. J., Nearly ordinary deformations of irreducible residual representations, Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), 185215.CrossRefGoogle Scholar
[48]Tate, J., The non-existence of certain Galois extensions of ℚ unramified outside 2, Contemp. Math. 174 (1994), 153156.Google Scholar
[49]Taylor, R., On Galois representations associated to Hilbert modular forms, Invent. Math 98 (1989), 265280.CrossRefGoogle Scholar
[50]Voight, J., Quadratic forms and quaternion algebras: algorithms and arithmetic, PhD thesis, University of California, Berkeley, 2005.Google Scholar
[51]Voight, J., Computing fundamental domains for cofinite Fuchsian groups, J. Théor. Nombres Bordeaux 21 (2009), 467489.Google Scholar
[52]Voight, J., Shimura curves of genus at most two, Math. Comp. 78 (2009), 11551172.Google Scholar
[53]Wiese, G., On projective linear groups over finite fields as Galois groups over the rational numbers, in Modular forms on Schiermonnikoog, eds Edixhoven, Bas, van der Geer, Gerard and Moonen, Ben (Cambridge University Press, Cambridge, 2008), 343350.Google Scholar
[54]Wiles, A., On ordinary λ-adic representations associated to modular forms, Invent. Math 94 (1988), 529573.Google Scholar