Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T12:57:36.600Z Has data issue: false hasContentIssue false

Non-commutative thickening of moduli spaces of stable sheaves

Published online by Cambridge University Press:  26 April 2017

Yukinobu Toda*
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan email [email protected]

Abstract

We show that the moduli spaces of stable sheaves on projective schemes admit certain non-commutative structures, which we call quasi-NC structures, generalizing Kapranov’s NC structures. The completion of our quasi-NC structure at a closed point of the moduli space gives a pro-representable hull of the non-commutative deformation functor of the corresponding sheaf developed by Laudal, Eriksen, Segal and Efimov–Lunts–Orlov. We also show that the framed stable moduli spaces of sheaves have canonical NC structures.

Type
Research Article
Copyright
© The Author 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Cónsul, L. and King, A., A functorial construction of moduli of sheaves , Invent. Math. 168 (2007), 613666.CrossRefGoogle Scholar
Behrend, K., Fontanine, I. C., Hwang, J. and Rose, M., The derived moduli space of stable sheaves , Algebra Number Theory 8 (2014), 781812.CrossRefGoogle Scholar
Ben-Bassat, O., Brav, C., Bussi, V. and Joyce, D., A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications , Geom. Topol. 19 (2015), 12871359.CrossRefGoogle Scholar
Bodzenta, A. and Bondal, A., Flops and spherical functors, Preprint (2015), arXiv:1511.00665.Google Scholar
Bridgeland, T., Flops and derived categories , Invent. Math. 147 (2002), 613632.CrossRefGoogle Scholar
Chen, J.-C., Flops and equivalences of derived categories for three-folds with only Gorenstein singularities , J. Differential Geom. 61 (2002), 227261.Google Scholar
Donovan, W. and Wemyss, M., Twists and braids for general 3-fold flops, Preprint (2015),arXiv:1504.05320.Google Scholar
Donovan, W. and Wemyss, M., Noncommutative deformations and flops , Duke Math. J. 165 (2016), 13971474.CrossRefGoogle Scholar
Efimov, A., Lunts, V. and Orlov, D., Deformation theory of objects in homotopy and derived categories. I. General theory , Adv. Math. 222 (2009), 359401.CrossRefGoogle Scholar
Efimov, A., Lunts, V. and Orlov, D., Deformation theory of objects in homotopy and derived categories. II. Pro-representability of the deformation functor , Adv. Math. 224 (2010), 45102.CrossRefGoogle Scholar
Efimov, A., Lunts, V. and Orlov, D., Deformation theory of objects in homotopy and derived categories. III. Abelian categories , Adv. Math. 226 (2011), 38573911.CrossRefGoogle Scholar
Eriksen, E., Computing noncommutative deformations of presheaves and sheaves of modules , Canad. J. Math. 62 (2010), 520542.CrossRefGoogle Scholar
Fiorenza, D., Iacono, D. and Martinengo, E., Differential graded Lie algebras controlling infinitesimal deformations of coherent sheaves , J. Eur. Math. Soc. 14 (2012), 521540.Google Scholar
Fontanine, I. C. and Kapranov, M., Derived Quot schemes , Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), 403440.Google Scholar
Horja, P., Derived category automorphisms from mirror symmetry , Duke Math. J. 127 (2005), 134.CrossRefGoogle Scholar
Hua, Z. and Toda, Y., Contraction algebra and invariants of singularities, Preprint (2016),arXiv:1601.04881.Google Scholar
Huybrechts, D. and Lehn, M., Geometry of moduli spaces of sheaves, Aspects in Mathematics, vol. E31 (Vieweg, 1997).CrossRefGoogle Scholar
Joyce, D. and Song, Y., A theory of generalized Donaldson–Thomas invariants , Mem. Amer. Math. Soc. 217 (2012).Google Scholar
Kapranov, M., Noncommutative geometry based on commutator expansions , J. reine angew. Math. 505 (1998), 73118.CrossRefGoogle Scholar
Katz, S., Genus zero Gopakumar–Vafa invariants of contractible curves , J. Differential Geom. 79 (2008), 185195.Google Scholar
Kawamata, Y., On multi-pointed non-commutative deformations and Calabi–Yau threefolds, Preprint (2015), arXiv:1512.06170.Google Scholar
King, A., Moduli of representations of finite-dimensional algebras , Q. J. Math. Oxford Ser. (2) 45 (1994), 515530.CrossRefGoogle Scholar
Kontsevich, M. and Soibelman, Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, Preprint (2008), arXiv:0811.2435.Google Scholar
Laudal, O., Noncommutative deformations of modules , Homology, Homotopy Appl. 4 (2002), 357396.CrossRefGoogle Scholar
Milnor, J., Introduction to algebraic K-theory (Princeton University Press, 1971).Google Scholar
Mukai, S., Duality between D (X) and D (X̂) with its application to Picard sheaves , Nagoya Math. J. 81 (1981), 101116.Google Scholar
Mukai, S., On the moduli space of bundles on K3 surfaces I , in Vector bundles on algebraic varieties, eds Atiyah, M. F. et al. (Oxford University Press, 1987), 341413.Google Scholar
Orem, H., Formal geometry for noncommutative manifolds, Preprint (2014), arXiv:1408.0830.Google Scholar
Orlov, D., Derived categories of coherent sheaves and triangulated categories of singularities , in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, Progress in Mathematics, vol. 270 (Birkhäuser, Boston, MA, 2009), 503531.CrossRefGoogle Scholar
Pantev, T., Toën, B., Vaquie, M. and Vezzosi, G., Shifted symplectic structures , Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271328.CrossRefGoogle Scholar
Polishchuk, A. and Tu, J., DG-resolutions of NC-smooth thickenings and NC-Fourier–Mukai transforms , Math. Ann. 360 (2014), 79156.Google Scholar
Schlessinger, M., Functors on Artin rings , Trans. Amer. Math. Soc. 130 (1968), 208222.Google Scholar
Segal, E., The A deformation theory of a point and the derived categories of local Calabi–Yaus , J. Algebra 320 (2008), 32323268.CrossRefGoogle Scholar
Thomas, R. P., A holomorphic Casson invariant for Calabi–Yau 3-folds and bundles on K3-fibrations , J. Differential Geom. 54 (2000), 367438.Google Scholar
Toda, Y., Non-commutative width and Gopakumar–Vafa invariants , Manuscripta Math. 148 (2015), 521533.CrossRefGoogle Scholar
Toda, Y., Non-commutative virtual structure sheaves, Preprint (2015), arXiv:1511.0031.Google Scholar
Toën, B. and Vaquié, M., Moduli of objects in dg-categories , Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 387444.CrossRefGoogle Scholar
Wemyss, M., Aspects of the homological minimal model program, Preprint (2014),arXiv:1411.7189.Google Scholar
Zhang, Z., A note on formality and singularities of moduli spaces , Mosc. Math. J. 12 (2012), 863879.CrossRefGoogle Scholar