Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T16:05:32.641Z Has data issue: false hasContentIssue false

Nef anti-canonical divisors and rationally connected fibrations

Published online by Cambridge University Press:  28 June 2019

Sho Ejiri
Affiliation:
Department of Mathematics, Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, Japan email [email protected]
Yoshinori Gongyo
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan email [email protected]

Abstract

We study the Iitaka–Kodaira dimension of nef relative anti-canonical divisors. As a consequence, we prove that given a complex projective variety with klt singularities, if the anti-canonical divisor is nef, then the dimension of a general fibre of the maximal rationally connected fibration is at least the Iitaka–Kodaira dimension of the anti-canonical divisor.

Type
Research Article
Copyright
© The Authors 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, D. and Oort, F., Alterations and resolution of singularities , in Resolution of singularities (Springer, Basel, 2000), 39108.10.1007/978-3-0348-8399-3_3Google Scholar
Bauer, T., Kovács, S. J., Küronya, A., Mistretta, E. C., Szemberg, T. and Urbinati, S., On positivity and base loci of vector bundles , Eur. J. Math. 1 (2015), 229249.10.1007/s40879-015-0038-4Google Scholar
Boucksom, S., Demailly, J.-P., Pǎun, M. and Peternell, T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension , J. Algebraic Geom. 22 (2013), 201248.10.1090/S1056-3911-2012-00574-8Google Scholar
Campana, F., Connexité rationnelle des variétés de Fano , Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 539545.10.24033/asens.1658Google Scholar
Campana, F., Orbifolds, special varieties and classification theory , Ann. Inst. Fourier 54 (2004), 499630.10.5802/aif.2027Google Scholar
Cao, J. and Höring, A., A decomposition theorem for projective manifolds with nef anticanonical bundle , J. Algebraic Geom. 28 (2019), 567597.10.1090/jag/715Google Scholar
Chen, M. and Zhang, Q., On a question of Demailly–Peternell–Schneider , J. Eur. Math. Soc. 15 (2013), 18531858.10.4171/JEMS/406Google Scholar
de Jong, A. J., Smoothness, semi-stability and alterations , Publ. Math. Inst. Hautes Études Sci. 83 (1996), 5193.Google Scholar
Druel, S., Quelques remarques sur la décomposition de Zariski divisorielle sur les variétés dont la première classe de Chern est nulle , Math. Z. 267 (2011), 413423.10.1007/s00209-009-0626-4Google Scholar
Ejiri, S., Positivity of anti-canonical divisors and $F$ -purity of fibers, Preprint (2016),arXiv:1604.02022.Google Scholar
Ejiri, S., Weak positivity theorem and Frobenius stable canonical rings of geometric generic fibers , J. Algebraic Geom. 26 (2017), 691734.10.1090/jag/698Google Scholar
Fujino, O., Notes on the weak positivity theorems , in Algebraic varieties and automorphism groups, Advanced Studies in Pure Mathematics, vol. 75 (Mathematical Society of Japan, Tokyo, 2017), 73118.10.2969/aspm/07510073Google Scholar
Fujita, T., On Kähler fiber spaces over curves , J. Math. Soc. Japan 30 (1978), 779794.10.2969/jmsj/03040779Google Scholar
Graber, T., Harris, J. and Starr, J., Families of rationally connected varieties , J. Amer. Math. Soc. 16 (2003), 5767.10.1090/S0894-0347-02-00402-2Google Scholar
Hacon, C. D. and McKernan, J., Shokurov’s rational connectedness conjecture, Preprint (2005), arXiv:math/0504330.Google Scholar
Hacon, C. D. and McKernan, J., On Shokurov’s rational connectedness conjecture , Duke Math. J. 138 (2007), 119136.10.1215/S0012-7094-07-13813-4Google Scholar
Hara, N. and Watanabe, K.-i., F-regular and F-pure rings vs. log terminal and log canonical singularities , J. Algebraic Geom. 11 (2002), 363392.10.1090/S1056-3911-01-00306-XGoogle Scholar
Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977).10.1007/978-1-4757-3849-0Google Scholar
Hochster, M. and Huneke, C., Tight closure and strong F-regularity , Mém. Soc. Math. Fr. 38 (1989), 119133.Google Scholar
Hochster, M. and Roberts, J. L., The purity of the Frobenius and local cohomology , Adv. Math. 21 (1976), 117172.10.1016/0001-8708(76)90073-6Google Scholar
Kawamata, Y., Characterization of abelian varieties , Compos. Math. 43 (1981), 253276.Google Scholar
Kollár, J., Miyaoka, Y. and Mori, S., Rational connectedness and boundedness of Fano manifolds , J. Differential Geom. 36 (1992), 765779.Google Scholar
Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).10.1017/CBO9780511662560Google Scholar
Nakayama, N., Zariski-decomposition and abundance, MSJ Memoirs, vol. 14 (Mathematical Society of Japan, Tokyo, 2004).10.2969/msjmemoirs/014010000Google Scholar
Patakfalvi, Z., Semi-positivity in positive characteristics , Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 9911025.10.24033/asens.2232Google Scholar
Patakfalvi, Z., Schwede, K. and Zhang, W., F-singularities in families , Algebr. Geom. 5 (2018), 264327.Google Scholar
Schwede, K., Generalized test ideals, sharp F-purity, and sharp test elements , Math. Res. Lett. 15 (2008), 12511261.Google Scholar
Schwede, K. and Smith, K. E., Globally F-regular and log Fano varieties , Adv. Math. 224 (2010), 863894.Google Scholar
Schwede, K. and Wenliang, Z., Bertini theorems for F-singularities , Proc. Lond. Math. Soc. (3) 107 (2013), 851874.Google Scholar
Viehweg, E., Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces , in Algebraic varieties and analytic varieties (Mathematical Society of Japan, Tokyo, 1983), 329353.10.2969/aspm/00110329Google Scholar
Viehweg, E., Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 30 (Springer, Berlin, 1995).Google Scholar
Zhang, Q., On projective varieties with nef anticanonical divisors , Math. Ann. 332 (2005), 697703.10.1007/s00208-005-0649-zGoogle Scholar
Zhang, Q., Rational connectedness of log Q-Fano varieties , J. Reine Angew. Math. 590 (2006), 131142.Google Scholar