Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T18:44:16.821Z Has data issue: false hasContentIssue false

Nearby cycles of automorphic étale sheaves

Published online by Cambridge University Press:  05 October 2017

Kai-Wen Lan
Affiliation:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455, USA email [email protected]
Benoît Stroh
Affiliation:
C.N.R.S. and Université Paris 13, 99 avenue Jean Baptiste Clément, 99430 Villetaneuse, France email [email protected] Current address: C.N.R.S. and Institut de Mathématiques de Jussieu–Paris Rive Gauche, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract

We show that the automorphic étale cohomology of a (possibly noncompact) PEL-type or Hodge-type Shimura variety in characteristic zero is canonically isomorphic to the cohomology of the associated nearby cycles over most of their mixed characteristics models constructed in the literature.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artin, M., Algebraic approximation of structures over complete local rings , Publ. Math. Inst. Hautes Études Sci. 36 (1969), 2358.CrossRefGoogle Scholar
Ash, A., Mumford, D., Rapoport, M. and Tai, Y., Smooth compactification of locally symmetric varieties, Cambridge Mathematical Library, second edition (Cambridge University Press, Cambridge, 2010).Google Scholar
Beilinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers , inAnalyse et topologie sur les espaces singuliers I, CIRM, Luminy, 6–10 July 1981, Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982).Google Scholar
Berkovich, V., Étale cohomology for non-Archimedean analytic spaces , Publ. Math. Inst. Hautes Études Sci. 78 (1993), 5161.CrossRefGoogle Scholar
Breuil, C. and Mézard, A., Multiplicités modulaires et représentations de GL2(Z p ) et de Gal( Q p /Q p ) en = p , Duke Math. J. 115 (2002), 205310.Google Scholar
Deligne, P., La conjecture de Weil. II , Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252.Google Scholar
Deligne, P., Hodge cycles on abelian varieties , in Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900 (Springer, Berlin/Heidelberg, 1982), 9100; with notes by J. Milne.Google Scholar
Deligne, P. and Pappas, G., Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant , Compos. Math. 90 (1994), 5979.Google Scholar
Grothendieck, A. and Dieudonné, J., Eléments de géométrie algébrique, Publications Mathématiques. Institut de Hautes Études Scientifiques, vols. 4, 8, 11, 17, 20, 24, 28, 32 (Institut des Hautes Etudes Scientifiques, Paris, 1960, 1961, 1961, 1963, 1964, 1965, 1966, 1967).Google Scholar
Ekedahl, T., On the adic formalism , in The Grothendieck festschrift: A collection of articles written in honer of the 60th birthday of Alexander Grothendieck, Volume II eds Cartier, P., Illusie, L., Katz, N. M., Laumon, G., Manin, Y. and Ribet, K. A. (Birkhäuser, Boston, 1990), 197218.Google Scholar
Faltings, G. and Chai, C.-L., Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 22 (Springer, Berlin/Heidelberg, 1990).CrossRefGoogle Scholar
Fargues, L., Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales , in Variétés de Shimura, espaces de Rapoport–Zink, et correspondances de Langlands locales, Astérisque, vol. 291 (Société Mathématique de France, Paris, 2004), 1199.Google Scholar
Fujiwara, K., Rigid geometry, Lefschetz–Verdier trace formula and Deligne’s conjecture , Invent. Math. 127 (1997), 489533.Google Scholar
Genestier, A. and Tilouine, J., Systèmes de Taylor–Wiles pour GSp4 , in Formes automorphes (II): Le cas du groupe GSp(4), Astérisque, vol. 302, eds Tilouine, J., Carayol, H., Harris, M. and Vignéras, M.-F. (Société Mathématique de France, Paris, 2005), 177290.Google Scholar
Haines, T. J., Introduction to Shimura varieties with bad reductions of parahoric type , in Harmonic analysis, the trace formula, and Shimura varieties, Proc. Clay Mathematics Institute 2003 Summer School, The Fields Institute, Toronto, 2–27 June 2003, Clay Mathematics Proceedings, vol. 4, eds Arthur, J., Ellwood, D. and Kottwitz, R. (American Mathematical Society/Clay Mathematics Institute, Providence, RI/Cambridge, MA, 2005), 583658.Google Scholar
Harris, M., Functorial properties of toroidal compactifications of locally symmetric varieties , Proc. Lond. Math. Soc. (3) 59 (1989), 122.CrossRefGoogle Scholar
Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, 2001).Google Scholar
Helm, D., Towards a geometric Jacquet–Langlands correspondence for unitary Shimura varieties , Duke Math. J. 155 (2010), 483518.Google Scholar
Illusie, L., Autour du théorème de monodromie locale , in Périodes p-adiques, Bures-sur-Yvette, 1988, Astérisque, vol. 223 (Société Mathématique de France, Paris, 1994), 957.Google Scholar
Imai, N. and Mieda, Y., Compactly supported cohomology and nearby cycles of open Shimura varieties of PEL type, Preprint (2011), http://www.ms.u-tokyo.ac.jp/∼mieda/.Google Scholar
Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal embeddings I, Lecture Notes in Mathematics, vol. 339 (Springer, Berlin/Heidelberg, 1973).CrossRefGoogle Scholar
Kisin, M., Integral models for Shimura varieties of abelian type , J. Amer. Math. Soc. 23 (2010), 9671012.CrossRefGoogle Scholar
Kottwitz, R. E., Isocrystals with additional structure , Compos. Math. 56 (1985), 201220.Google Scholar
Kottwitz, R. E., Shimura varieties and 𝜆-adic representations , in Automorphic forms, Shimura varieties, and L-functions, Vol. I, University of Michigan, Ann Arbor, MI, 6–16 July 1988, Perspectives in Mathematics, vol. 10, eds Clozel, L. and Milne, J. S. (Academic Press, Boston, 1990), 161209.Google Scholar
Kottwitz, R. E., Points on some Shimura varieties over finite fields , J. Amer. Math. Soc. 5 (1992), 373444.CrossRefGoogle Scholar
Kottwitz, R. E., Isocrystals with additional structure. II , Compos. Math. 109 (1997), 255339.Google Scholar
Lan, K.-W., Elevators for degenerations of PEL structures , Math. Res. Lett. 18 (2011), 889907.CrossRefGoogle Scholar
Lan, K.-W., Toroidal compactifications of PEL-type Kuga families , Algebra Number Theory 6 (2012), 885966.CrossRefGoogle Scholar
Lan, K.-W., Arithmetic compactification of PEL-type Shimura varieties, London Mathematical Society Monographs, vol. 36 (Princeton University Press, Princeton, 2013), errata and revision available online at the author’s website,http://www.math.umn.edu/∼kwlan/.Google Scholar
Lan, K.-W., Boundary strata of connected components in positive characteristics , Algebra Number Theory 9 (2015), 20352054, appendix in [Xin Wan, Families of nearly ordinary Eisenstein series on unitary groups, Algebra Number Theory 9 (2015), 1955–2054].Google Scholar
Lan, K.-W., Compactifications of splitting models of PEL-type Shimura varieties, Trans. Amer. Math. Soc., to appear. Preprint (2015), http://www.math.umn.edu/∼kwlan/.Google Scholar
Lan, K.-W., Compactifications of PEL-type Shimura varieties in ramified characteristics , Forum Math. Sigma 4 (2016), e1.CrossRefGoogle Scholar
Lan, K.-W., Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci (World Scientific, Singapore, 2017).CrossRefGoogle Scholar
Lan, K.-W., Integral models of toroidal compactifications with projective cone decompositions , Int. Math. Res. Not. IMRN 2017 (2017), 32373280.Google Scholar
Lan, K.-W. and Stroh, B., Compactifications of subschemes of integral models of shimura varieties, Preprint (2015), http://www.math.umn.edu/∼kwlan/.Google Scholar
Lan, K.-W. and Suh, J., Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura varieties , Duke Math. J. 161 (2012), 11131170.CrossRefGoogle Scholar
Levin, B., Local models for Weil-restricted groups , Compos. Math. 152 (2016), 25632601.Google Scholar
Madapusi Pera, K., Toroidal compactifications of integral models of Shimura varieties of Hodge type, Preprint (2015), http://math.uchicago.edu/∼keerthi/.Google Scholar
Mantovan, E., On the cohomology of certain PEL-type Shimura varieties , Duke Math. J. 129 (2005), 573610.CrossRefGoogle Scholar
Mantovan, E., -adic étale cohomology of PEL type Shimura varieties with non-trivial coefficients, WIN–Woman in Numbers, Fields Institute Communications, vol. 60 (American Mathematical Society, Providence, RI, 2011), 61–83.CrossRefGoogle Scholar
Pappas, G. and Rapoport, M., Local models in the ramified case, I. The EL-case , J. Algebraic Geom. 12 (2003), 107145.Google Scholar
Pappas, G. and Rapoport, M., Local models in the ramified case, II. Splitting models , Duke Math. J. 127 (2005), 193250.Google Scholar
Pappas, G. and Zhu, X., Local models of Shimura varieties and a conjecture of Kottwitz , Invent. Math. 194 (2013), 147254.Google Scholar
Pink, R., Arithmetic compactification of mixed Shimura varieties, PhD thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn (1989).Google Scholar
Polo, P. and Tilouine, J., Bernstein–Gelfand–Gelfand complex and cohomology of nilpotent groups over ℤ(p) for representations with p-small weights , in Cohomology of Siegel varieties, Astérisque, vol. 280 (Société Mathématique de France, Paris, 2002), 97135.Google Scholar
Rapoport, M., Compactifications de l’espace de modules de Hilbert–Blumenthal , Compos. Math. 36 (1978), 255335.Google Scholar
Rapoport, M. and Richartz, M., On the classification and specialization of F-isocrystals with additional structure , Compos. Math. 103 (1996), 153181.Google Scholar
Rapoport, M. and Zink, T., Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141 (Princeton University Press, Princeton, 1996).Google Scholar
Reduzzi, D. A. and Xiao, L., Partial Hasse invariants on splitting models of Hilbert modular varieties, Ann. Sci. Éc. Norm. Supér. (4), to appear. Preprint (2014),http://www.math.uconn.edu/∼lxiao/.Google Scholar
Sasaki, S., Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms, Preprint (2014),http://www.cantabgold.net/users/s.sasaki.03/.Google Scholar
Scholze, P., The Langlands–Kottwitz method and deformation spaces of p-divisible groups , J. Amer. Math. Soc. 26 (2013), 227259.Google Scholar
Artin, M., Grothendieck, A. and Verdier, J.-L. (eds), Théorie des topos et cohomologie étale des schémas (SGA 4), Tome 3, Lecture Notes in Mathematics, vol. 305 (Springer, Berlin/Heidelberg, 1973).Google Scholar
Deligne, P. (ed.), Cohomologie étale (SGA 4½), Lecture Notes in Mathematics, vol. 569 (Springer, Berlin/Heidelberg, 1977).Google Scholar
Deligne, P. and Katz, N. (eds), Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Mathematics, vol. 340 (Springer, Berlin/Heidelberg, 1973).Google Scholar
Scholze, P. and Shin, S. W., On the cohomology of compact unitary group Shimura varieties at ramified split places , J. Amer. Math. Soc. 26 (2013), 261294.Google Scholar
Shin, S. W., Galois representations arising from some compact Shimura varieties , Ann. of Math. (2) 173 (2011), 16451741.Google Scholar
Skinner, C., A note on the p-adic Galois representations attached to Hilbert modular forms , Doc. Math. 14 (2009), 241258.Google Scholar
Spivakovsky, M., A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms , J. Amer. Math. Soc. 12 (1999), 381444.Google Scholar
Stroh, B., Compactification de variétés de Siegel aux places de mauvaise réduction , Bull. Soc. Math. France 138 (2010), 259315.Google Scholar
Stroh, B., Compactification minimale et mauvaise réduction , Ann. Inst. Fourier (Grenoble) 60 (2010), 10351055.CrossRefGoogle Scholar
Stroh, B., Sur une conjecture de Kottwitz au bord , Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 143165.Google Scholar
Teissier, B., Résultats récents sur l’approximation des morphismes en algèbre commutative (d’après André, Artin, Popescu, et Spivakovsky) , in Séminaire Bourbaki, exposé n°  784, March 1994, Astérisque, vol. 227 (Société Mathématique de France, Paris, 1995), 259282.Google Scholar
Varshavsky, Y., Lefschetz–Verdier trace formula and a generalization of a theorem of Fujiwara , Geom. Funct. Anal. 17 (2007), 271319.Google Scholar