Published online by Cambridge University Press: 04 December 2007
The cohomology ring of the moduli space $M(n,d)$ of semistable bundles of coprime rank $n$ and degree $d$ over a Riemann surface $M$of genus $g \geqslant 2$ has again proven a rich source of interest in recent years. The rank two, odd degree case is now largely understood. In 1991 Kirwan [8] proved two long standing conjectures due to Mumford and to Newstead and Ramanan. Mumford conjectured that a certain set of relations form a complete set; the Newstead-Ramanan conjecture involved the vanishing of the Pontryagin ring. The Newstead–Ramanan conjecture was independently proven by Thaddeus [15] as a corollary to determining the intersection pairings. As yet though, little work has been done on the cohomology ring in higher rank cases. A simple numerical calculation shows that the Mumford relations themselves are not generally complete when $n>2$. However by generalising the methods of [8] and by introducing new relations, in a sense dual to the original relations conjectured by Mumford, we prove results corresponding to the Mumford and Newstead-Ramanan conjectures in the rank three case. Namely we show (Sect. 4) that the Mumford relations and these ‘dual’ Mumford relations form a complete set for the rational cohomology ring of $M(3,d)$ and show (Sect. 5) that the Pontryagin ring vanishes in degree$12g-8$ and above.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.