Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T23:12:02.475Z Has data issue: false hasContentIssue false

Monoidal abelian envelopes

Published online by Cambridge University Press:  24 June 2021

Kevin Coulembier*
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, [email protected]

Abstract

We prove a constructive existence theorem for abelian envelopes of non-abelian monoidal categories. This establishes a new tool for the construction of tensor categories. As an example we obtain new proofs for the existence of several universal tensor categories as conjectured by Deligne. Another example constructs interesting tensor categories in positive characteristic via tilting modules for ${\rm SL}_2$.

Type
Research Article
Copyright
© 2021 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, Y. and Kahn, B., Nilpotence, radicaux et structures monoïdales. With an appendix by Peter O'Sullivan, Rend. Sem. Mat. Univ. Padova 108 (2002), 107291.Google Scholar
Benson, D. and Etingof, P., Symmetric tensor categories in characteristic 2, Adv. Math. 351 (2019), 967999.CrossRefGoogle Scholar
Benson, D., Etingof, P. and Ostrik, V., New incompressible symmetric tensor categories in positive characteristic, Preprint (2020), arXiv:2003.10499.Google Scholar
Borceux, F. and Quinteiro, C., A theory of enriched sheaves, Cahiers Topol. Géom. Différ. Catég. 37 (1996), 145162.Google Scholar
Comes, J. and Heidersdorf, T., Thick ideals in Deligne's category $\underline{\textrm{Rep}}(O_t)$, J. Algebra 480 (2017), 237265.CrossRefGoogle Scholar
Comes, J. and Ostrik, V., On Deligne's category $\underline {Rep}^{ab}(S_d)$, Algebra Number Theory 8 (2014), 473496.CrossRefGoogle Scholar
Coulembier, K., Tensor ideals, Deligne categories and invariant theory, Selecta Math. (N.S.) 24 (2018), 46594710.CrossRefGoogle Scholar
Coulembier, K., Tannakian categories in positive characteristic, Duke Math. J. 169 (2020), 31673219.CrossRefGoogle Scholar
Coulembier, K., Entova-Aizenbud, I. and Heidersdorf, T., Monoidal abelian envelopes and a conjecture of Benson–Etingof , Preprint (2019), arXiv:1911.04303.Google Scholar
Day, B., A reflection theorem for closed categories, J. Pure Appl. Algebra 2 (1972), 111.CrossRefGoogle Scholar
Deligne, P., Catégories tannakiennes, in The Grothendieck Festschrift, vol. II, Progress in Mathematics, vol. 87 (Birkhäuser, Boston, 1990), 111195.Google Scholar
Deligne, P., Catégories tensorielles, Mosc. Math. J. 2 (2002), 227248.CrossRefGoogle Scholar
Deligne, P., La catégorie des représentations du groupe symétrique S t, lorsque t n'est pas un entier naturel, in Algebraic groups and homogeneous spaces (Tata Institute of Fundamental Research Studies in Mathematics, Mumbai, 2007), 209273.Google Scholar
Etingof, P. and Ostrik, V., On the Frobenius functor for symmetric tensor categories in positive characteristic, Preprint (2019), arXiv:1912.12947.Google Scholar
Entova-Aizenbud, I., Hinich, V. and Serganova, V., Deligne categories and the limit of categories $Rep(GL(m|n))$, Int. Math. Res. Not. IMRN 2020 (2020), 46024666.CrossRefGoogle Scholar
Etingof, P. and Gelaki, S., Finite symmetric integral tensor categories with the Chevalley property, to appear in IMRN, Preprint (2019), arXiv:1901.00528.Google Scholar
Harman, N., Deligne categories as limits in rank and characteristic, Preprint (2016), arXiv:1601.03426.Google Scholar
Heidersdorf, T., Mixed tensors of the general linear supergroup, J. Algebra 491 (2017), 402446.CrossRefGoogle Scholar
Jantzen, J. C., Representations of algebraic groups, second edition, Mathematical Surveys and Monographs, vol. 107 (American Mathematical Society, Providence, RI, 2003).Google Scholar
Lehrer, G. I. and Zhang, R. B., The first fundamental theorem of invariant theory for the orthosymplectic supergroup, Commun. Math. Phys. 349 (2017), 661702.CrossRefGoogle Scholar
Ostrik, V., On symmetric fusion categories in positive characteristic, Selecta Math. (N.S.) 26 (2020), Paper No. 36.CrossRefGoogle Scholar
Schäppi, D., Constructing colimits by gluing vector bundles, Adv. Math. 375 (2020), 107394.CrossRefGoogle Scholar
Sergeev, A. N., Representations of the Lie superalgebras $gl(n, m)$ and $Q(n)$ in a space of tensors, Funktsional. Anal. i Prilozhen. 18 (1984), 8081.CrossRefGoogle Scholar
Demazure, M. and Grothendieck, A., Schémas en groupes (SGA3), Tome 1, Lecture Notes in Mathematics, vol. 151 (Springer, Berlin, 1970).Google Scholar
Zhang, Y., On the second fundamental theorem of invariant theory for the orthosymplectic supergroup, J. Algebra 501 (2018), 394434.CrossRefGoogle Scholar