Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T18:16:47.324Z Has data issue: false hasContentIssue false

Moduli spaces of stable quotients and wall-crossing phenomena

Published online by Cambridge University Press:  31 May 2011

Yukinobu Toda*
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, Japan (email: [email protected], [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The moduli space of holomorphic maps from Riemann surfaces to the Grassmannian is known to have two kinds of compactifications: Kontsevich’s stable map compactification and Marian–Oprea–Pandharipande’s stable quotient compactification. Over a non-singular curve, the latter moduli space is Grothendieck’s Quot scheme. In this paper, we give the notion of ‘ ϵ-stable quotients’ for a positive real number ϵ, and show that stable maps and stable quotients are related by wall-crossing phenomena. We will also discuss Gromov–Witten type invariants associated to ϵ-stable quotients, and investigate them under wall crossing.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[AMV04]Aganagic, M., Marino, M. and Vafa, C., All loop topological string amplitudes from Chern–Simons theory, Comm. Math. Phys. 247 (2004), 467512.CrossRefGoogle Scholar
[AG08]Alexeev, V. and Guy, M., Moduli of weighted stable maps and their gravitational descendants, J. Inst. Math. Jussieu 7 (2008), 425456.Google Scholar
[BM09]Bayer, A. and Macri, E., The space of stability conditions on the local projective plane, Preprint, arXiv:0912.0043.Google Scholar
[Beh97]Behrend, K., Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601617.CrossRefGoogle Scholar
[BF97]Behrend, K. and Fantechi, B., The intrinsic normal cone, Invent. Math. 128 (1997), 4588.Google Scholar
[Ber94]Bertram, A., Towards a Schubert calculus for maps from a Riemann surface to a Grassmannian, Internat. J. Math. 5 (1994), 811825.Google Scholar
[Ber97]Bertram, A., Quantum Schubert calculus, Adv. Math. 128 (1997), 289305.CrossRefGoogle Scholar
[BDW96]Bertram, A., Daskalopoulos, G. and Wentworth, R., Gromov invariants for holomorphic maps from Riemann surfaces to Grasmannians, J. Amer. Math. Soc. 9 (1996), 529571.CrossRefGoogle Scholar
[Bri10]Bridgeland, T., Hall algebras and curve-counting invariants, Preprint, arXiv:1002.4374.Google Scholar
[CK09]Ciocan-Fontanine, I. and Kapranov, M., Virtual fundamental classes via dg-manifolds, Geom. Topol. 13 (2009), 17791804.Google Scholar
[FP00]Faber, C. and Pandharipande, R., Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000), 173199.CrossRefGoogle Scholar
[GP99]Graber, T. and Pandharipande, R., Localization of virtual classes, Invent. Math. 135 (1999), 487518.CrossRefGoogle Scholar
[Has03]Hassett, B., Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), 316352.CrossRefGoogle Scholar
[JS08]Joyce, D. and Song, Y., A theory of generalized Donaldson–Thomas invariants, Preprint, arXiv:0810.5645.Google Scholar
[KMM87]Kawamata, Y., Matsuda, K. and Matsuki, K., Introduction to the minimal model problem, Adv. Stud. Pure Math. 10 (1987), 283360.CrossRefGoogle Scholar
[KM10]Kiem, Y. H. and Moon, H. B., Moduli spaces of weighted pointed stable rational curves via GIT, Preprint, arXiv:1002.2461.Google Scholar
[KP01]Kim, B. and Pandharipande, R., The connectedness of the moduli spaces of maps to homogeneous spaces, in Symplectic geometry and mirror symmetry (World Scientific Publishing, River Edge, NJ, 2001), 187201.Google Scholar
[Kir85]Kirwan, F., Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. (2) 122 (1985), 4185.Google Scholar
[KM98]Kollár, J. and Mori, S., Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
[Kon95]Kontsevich, M., Enumeration of rational curves via torus actions. The moduli space of curves, Progr. Math. 129 (1995), 335368.Google Scholar
[KM94]Kontsevich, M. and Manin, Y., Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525562.Google Scholar
[KS08]Kontsevich, M. and Soibelman, Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, Preprint, arXiv:0811.2435.Google Scholar
[LM00]Laumon, G. and Moret-Bailly, L., Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 39 (Springer, Berlin, 2000).CrossRefGoogle Scholar
[LT98]Li, J. and Tian, G., Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), 119174.CrossRefGoogle Scholar
[MO07]Marian, A. and Oprea, D., Virtual intersections on the Quot schemes and Vafa–Intriligator formulas, Duke Math. J. 136 (2007), 81113.Google Scholar
[MOP09]Marian, A., Oprea, D. and Pandharipande, R., The moduli space of stable quotients, Preprint, arXiv:0904.2992.Google Scholar
[MNOP06]Maulik, D., Nekrasov, N., Okounkov, A. and Pandharipande, R., Gromov–Witten theory and Donaldson–Thomas theory. I, Compositio Math. 142 (2006), 12631285.Google Scholar
[MFK94]Mumford, D., Fogarty, J. and Kirwan, F., Geometric invariant theory, third enlarged edition (Springer, Berlin, 1994).CrossRefGoogle Scholar
[MM07]Mustatǎ, A. and Mustatǎ, A., Intermediate moduli spaces of stable maps, Invent. Math. 167 (2007), 4790.CrossRefGoogle Scholar
[PR03]Popa, M. and Roth, M., Stable maps and Quot schemes, Invent. Math. 152 (2003), 625663.CrossRefGoogle Scholar
[ST09]Stoppa, J. and Thomas, R. P., Hilbert schemes and stable pairs: GIT and derived category wall crossings, Preprint, arXiv:0903.1444.Google Scholar
[Tho00]Thomas, R. P., A holomorphic Casson invariant for Calabi–Yau 3-folds and bundles on K3-fibrations, J. Differential Geom. 54 (2000), 367438.Google Scholar
[Tod10a]Toda, Y., Curve counting theories via stable objects I: DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), 11191157.Google Scholar
[Tod10b]Toda, Y., Generating functions of stable pair invariants via wall-crossings in derived categories, in New developments in algebraic geometry, integrable systems and mirror symmetry, RIMS, Kyoto, 2008, Advanced Studies in Pure Mathematics, vol. 59 (Mathematical Society of Japan, Tokyo, 2010), 389434.Google Scholar