Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T06:20:07.409Z Has data issue: false hasContentIssue false

Local spectral equidistribution for Siegel modular forms and applications

Published online by Cambridge University Press:  21 February 2012

Emmanuel Kowalski
Affiliation:
ETH Zürich – D-MATH, Rämistrasse 101, 8092 Zürich, Switzerland (email: [email protected])
Abhishek Saha
Affiliation:
ETH Zürich – D-MATH, Rämistrasse 101, 8092 Zürich, Switzerland (email: [email protected])
Jacob Tsimerman
Affiliation:
Mathematics Department, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08540, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the distribution, in the space of Satake parameters, of local components of Siegel cusp forms of genus 2 and growing weight k, subject to a specific weighting which allows us to apply results concerning Bessel models and a variant of Petersson’s formula. We obtain for this family a quantitative local equidistribution result, and derive a number of consequences. In particular, we show that the computation of the density of low-lying zeros of the spinor L-functions (for restricted test functions) gives global evidence for a well-known conjecture of Böcherer concerning the arithmetic nature of Fourier coefficients of Siegel cusp forms.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[And74]Andrianov, A. N., Euler products that correspond to Siegel’s modular forms of genus 2, Uspekhi Mat. Nauk 29 (1974), 43110.Google Scholar
[AS01]Asgari, M. and Schmidt, R., Siegel modular forms and representations, Manuscripta Math. 104 (2001), 173200.CrossRefGoogle Scholar
[Boc86]Böcherer, S., Bemerkungen über die Dirichletreihen von Koecher und Maass, Mathematica Gottingensis 68 (1986), 36.Google Scholar
[Bro07]Brown, J., An inner product relation on Saito–Kurokawa lifts, Ramanujan J. 14 (2007), 89105.CrossRefGoogle Scholar
[Bru78]Bruggeman, R., Fourier coefficients of cusp forms, Invent. Math. 45 (1978), 118.CrossRefGoogle Scholar
[BFF97]Bump, D., Friedberg, S. and Furusawa, M., Explicit formulas for the Waldspurger and Bessel models, Israel J. Math. 102 (1997), 125177.CrossRefGoogle Scholar
[Car79]Cartier, P., Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics, Oregon State University, Corvallis, OR, 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 111155.Google Scholar
[Clo86]Clozel, L., On limit multiplicities of discrete series representations in spaces of automorphic forms, Invent. Math. 83 (1986), 265284.Google Scholar
[DW79]DeGeorge, D. L. and Wallach, N. R., Limit formulas for multiplicities in L 2(Γ∖G). II. The tempered spectrum, Ann. of Math. (2) 109 (1979), 477495.Google Scholar
[Del74]Deligne, P., La conjecture de Weil. I, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273307.CrossRefGoogle Scholar
[DM06]Dueñez, E. and Miller, S. J., The low lying zeros of a GL(4) and a GL(6) family of L-functions, Compositio Math. 142 (2006), 14031425.Google Scholar
[Duk95]Duke, W., The critical order of vanishing of automorphic L-functions with large level, Invent. Math. 119 (1995), 165174.CrossRefGoogle Scholar
[EZ85]Eichler, M. and Zagier, D., The theory of Jacobi forms, Progress in Mathematics, vol. 55 (Birkhäuser, Boston, MA, 1985).Google Scholar
[Fur93]Furusawa, M., On L-functions for GSp(4)×GL(2) and their special values, J. Reine Angew. Math. 438 (1993), 187218.Google Scholar
[FM11]Furusawa, M. and Martin, K., On central critical values of the degree four L-functions for GSp(4): the fundamental lemma, II, Amer. J. Math. 244 (2011), 197233.Google Scholar
[FMS]Furusawa, M., Martin, K. and Shalika, J., On central critical values of the degree four L-functions for GSp(4): the fundamental lemma, III, forthcoming.Google Scholar
[FS02]Furusawa, M. and Shalika, J. A., On inversion of the Bessel and Gelfand transforms, Trans. Amer. Math. Soc. 354 (2002), 837852 (electronic).Google Scholar
[FS03]Furusawa, M. and Shalika, J. A., On central critical values of the degree four L-functions for GSp(4), Memoirs of the American Mathematical Society, vol. 782 (American Mathematical Society, Providence, RI, 2003).Google Scholar
[HR95]Hoffstein, J. and Ramakrishnan, D., Siegel zeros and cusp forms, Int. Math. Res. Not. 6 (1995), 279308.Google Scholar
[II10]Ichino, A. and Ikeda, T., On the periods of automorphic forms on special orthogonal groups and the Gross–Prasad conjecture, Geom. Funct. Anal. 19 (2010), 13781425.Google Scholar
[Iwa87]Iwaniec, H., On Waldspurger’s theorem, Acta Arith. 49 (1987), 205212.CrossRefGoogle Scholar
[IK04]Iwaniec, H. and Kowalski, E., Analytic number theory, Colloquium Publications, vol. 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
[ILS00]Iwaniec, H., Luo, W. and Sarnak, P., Low lying zeros of families of L-functions, Publ. Math. Inst. Hautes Études Sci. 91 (2000), 55131.Google Scholar
[KS99]Katz, N. M. and Sarnak, P., Random matrices, Frobenius eigenvalues and symmetry, Colloquium Publications, vol. 45 (American Mathematical Society, Providence, RI, 1999).Google Scholar
[Kit84]Kitaoka, Y., Fourier coefficients of Siegel cusp forms of degree two, Nagoya Math. J. 93 (1984), 149171.Google Scholar
[Kli90]Klingen, H., Introductory lectures on Siegel modular forms, Cambridge Studies in Advanced Mathematics, vol. 20 (Cambridge University Press, Cambridge, 1990).Google Scholar
[Koh93]Kohnen, W., On Poincaré series of exponential type on Sp 2, Abh. Math. Semin. Univ. Hambg. 63 (1993), 283297.Google Scholar
[Kow11]Kowalski, E., Families of cusp forms, Preprint (2011).Google Scholar
[KMV02]Kowalski, E., Michel, P. and VanderKam, J., Rankin–Selberg L-functions in the level aspect, Duke Math. J. 114 (2002), 123191.Google Scholar
[KST11]Kowalski, E., Saha, A. and Tsimerman, J., A note on Fourier coefficients of Poincaré series, Mathematika 57 (2011), 3140.Google Scholar
[Mac00/01]Macdonald, I. G., Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000/01), Art. B45a, 40 pp (electronic).Google Scholar
[Mil04]Miller, S. J., 1- and 2-level densities for rational families of elliptic curves: evidence for the underlying group symmetries, Compositio Math. 140 (2004), 952994.Google Scholar
[Miz81]Mizumoto, S.-I., Fourier coefficients of generalized Eisenstein series of degree two. I, Invent. Math. 65 (1981), 115135.Google Scholar
[NP73]Novodvorsky, M. E. and Piatetski-Shapiro, I. I., Generalized Bessel models for the symplectic group of rank 2, Mat. Sb. (N.S.) 90 (1973), 246256 326.Google Scholar
[Pia83]Piatetski-Shapiro, I. I., On the Saito–Kurokawa lifting, Invent. Math. 71 (1983), 309338.Google Scholar
[Pit11]Pitale, A., Steinberg representation of GSp(4): Bessel models and integral representation of L-functions, Pacific J. Math. 250 (2011), 365406.CrossRefGoogle Scholar
[PS09]Pitale, A. and Schmidt, R., Ramanujan-type results for Siegel cusp forms of degree 2, J. Ramanujan Math. Soc. 24 (2009), 87111.Google Scholar
[PT11]Prasad, D. and Takloo-Bighash, R., Bessel models for GSp(4), J. Reine Angew. Math. 655 (2011), 189243.Google Scholar
[RR05]Ramakrishnan, D. and Rogawski, J., Average values of modular L-series via the relative trace formula, Pure Appl. Math. Q. 1 (2005), 701735.Google Scholar
[Sah09a]Saha, A., L-functions for holomorphic forms on GSp(4)×GL(2) and their special values, Int. Math. Res. Not. 2009 (2009), 17731837.Google Scholar
[Sah09b]Saha, A., On critical values of L-functions for holomorphic forms on GSp(4)×GL(2). PhD thesis, Caltech (2009). Available at http://thesis.library.caltech.edu/.Google Scholar
[Sar87]Sarnak, P., Statistical properties of eigenvalues of the Hecke operator, in Analytic number theory and diophantine problems, Progress in Mathematics, vol. 60 (Birkäuser, Boston, MA, 1987), 75102.Google Scholar
[Sau97]Sauvageot, F., Principe de densité pour les groupes réductifs, Compositio Math. 108 (1997), 151184.Google Scholar
[Sav89]Savin, G., Limit multiplicities of cusp forms, Invent. Math. 95 (1989), 149159.CrossRefGoogle Scholar
[Ser97]Serre, J.-P., Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p, J. Amer. Math. Soc. 10 (1997), 75102.CrossRefGoogle Scholar
[Shi]Shin, S. W., Plancherel density theorem for automorphic representations, Israel J. Math., to appear.Google Scholar
[Sug85]Sugano, T., On holomorphic cusp forms on quaternion unitary groups of degree 2, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1985), 521568.Google Scholar
[Wal81]Waldspurger, J.-L., Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), 375484.Google Scholar
[Wei09]Weissauer, R., Endoscopy for GSp(4) and the cohomology of Siegel modular threefolds, Lecture Notes in Mathematics, vol. 1968 (Springer, Berlin, 2009).Google Scholar