Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T09:36:49.628Z Has data issue: false hasContentIssue false

Level raising mod 2 and arbitrary 2-Selmer ranks

Published online by Cambridge University Press:  01 June 2016

Bao V. Le Hung
Affiliation:
Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA email [email protected]
Chao Li
Affiliation:
Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA email [email protected]

Abstract

We prove a level raising mod $\ell =2$ theorem for elliptic curves over $\mathbb{Q}$. It generalizes theorems of Ribet and Diamond–Taylor and also explains different sign phenomena compared to odd $\ell$. We use it to study the 2-Selmer groups of modular abelian varieties with common mod 2 Galois representation. As an application, we show that the 2-Selmer rank can be arbitrary in level raising families.

Type
Research Article
Copyright
© The Authors 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. B., Modularity of nearly ordinary 2-adic residually dihedral Galois representations , Compos. Math. 150 (2014), 12351346; MR 3252020.CrossRefGoogle Scholar
Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., Potential automorphy and change of weight , Ann. of Math. (2) 179 (2014), 501609; MR 3152941.CrossRefGoogle Scholar
Bertolini, M. and Darmon, H., Euler systems and Jochnowitz congruences , Amer. J. Math. 121 (1999), 259281; MR 1680333 (2001d:11060).CrossRefGoogle Scholar
Bosma, W., Cannon, J. and Playoust, C., The Magma algebra system. I. The user language , J. Symbolic Comput. 24 (1997), 235265; Computational algebra and number theory (London, 1993); MR 1484478.CrossRefGoogle Scholar
Breuil, C., Conrad, B., Diamond, F. and Taylor, R., On the modularity of elliptic curves over Q : wild 3-adic exercises , J. Amer. Math. Soc. 14 (2001), 843939, (electronic); MR 1839918 (2002d:11058).CrossRefGoogle Scholar
Brinon, O. and Conrad, B., CMI summer school notes on p-adic Hodge theory, http://math.stanford.edu/∼conrad/papers/notes.pdf.Google Scholar
Conrad, B., The flat deformation functor , in Modular forms and Fermat’s last theorem (Boston, MA, 1995) (Springer, New York, 1997), 373420; MR 1638486.CrossRefGoogle Scholar
Darmon, H., Diamond, F. and Taylor, R., Fermat’s last theorem , in Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993) (International Press, Cambridge, MA, 1997), 2140; MR 1605752 (99d:11067b).Google Scholar
Diamond, F. and Taylor, R., Lifting modular mod l representations , Duke Math. J. 74 (1994), 253269; MR 1272977 (95e:11052).CrossRefGoogle Scholar
Diamond, F. and Taylor, R., Nonoptimal levels of mod l modular representations , Invent. Math. 115 (1994), 435462; MR 1262939 (95c:11060).CrossRefGoogle Scholar
Gee, T., Automorphic lifts of prescribed types , Math. Ann. 350 (2011), 107144; MR 2785764 (2012c:11118).CrossRefGoogle Scholar
Gross, B. H. and Parson, J. A., On the local divisibility of Heegner points , in Number theory, analysis and geometry (Springer, New York, 2012), 215241; MR 2867919.CrossRefGoogle Scholar
Kassaei, P. L., p-adic modular forms over Shimura curves over Q, PhD thesis, Massachusetts Institute of Technology, ProQuest LLC, Ann Arbor, MI (1999); MR 2716881.Google Scholar
Kisin, M., Modularity of 2-adic Barsotti–Tate representations , Invent. Math. 178 (2009), 587634; MR 2551765 (2010k:11089).CrossRefGoogle Scholar
Li, C., 2-Selmer groups and Heegner points on elliptic curves, PhD thesis, Harvard University (2015).Google Scholar
Mazur, B. and Rubin, K., Ranks of twists of elliptic curves and Hilbert’s tenth problem , Invent. Math. 181 (2010), 541575; MR 2660452 (2012a:11069).CrossRefGoogle Scholar
Milne, J. S., Arithmetic duality theorems, vol. 1 of Perspectives in mathematics (Academic Press, Boston, MA, 1986); MR 881804 (88e:14028).Google Scholar
O’Neil, C., The period-index obstruction for elliptic curves , J. Number Theory 95 (2002), 329339; MR 1924106 (2003f:11079).CrossRefGoogle Scholar
Pilloni, V., The study of 2-dimensional $p$ -adic Galois deformations in the $\ell$ not $p$ case,http://perso.ens-lyon.fr/vincent.pilloni/Defo.pdf.Google Scholar
Poonen, B. and Rains, E., Random maximal isotropic subspaces and Selmer groups , J. Amer. Math. Soc. 25 (2012), 245269; MR 2833483.CrossRefGoogle Scholar
Raynaud, M., Schémas en groupes de type (p, …, p) , Bull. Soc. Math. France 102 (1974), 241280; MR 0419467 (54 #7488).CrossRefGoogle Scholar
Ribet, K. A., Raising the levels of modular representations , in Séminaire de théorie des nombres, Paris 1987–88, Progress in Mathematics, vol. 81 (Birkhäuser, Boston, MA, 1990), 259271; MR 1042773 (91g:11055).Google Scholar
Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques , Invent. Math. 15 (1972), 259331; MR 0387283 (52 #8126).CrossRefGoogle Scholar
Skinner, C. and Urban, E., The Iwasawa main conjectures for GL2 , Invent. Math. 195 (2014), 1277; MR 3148103.CrossRefGoogle Scholar
Snowden, A., Singularities of ordinary deformation rings, Preprint (2011), arXiv:1111.3654 [math.NT].Google Scholar
Stein, W. A. et al. , Sage mathematics software (ver. 5.11), The Sage Development Team, 2013, http://www.sagemath.org.Google Scholar
Tate, J., Finite flat group schemes , in Modular forms and Fermat’s last theorem (Boston, MA, 1995) (Springer, New York, 1997), 121154; MR 1638478.CrossRefGoogle Scholar
Taylor, R. and Wiles, A., Ring-theoretic properties of certain Hecke algebras , Ann. of Math. (2) 141 (1995), 553572; MR 1333036 (96d:11072).CrossRefGoogle Scholar
Wiles, A., Modular elliptic curves and Fermat’s last theorem , Ann. of Math. (2) 141 (1995), 443551; MR 1333035 (96d:11071).CrossRefGoogle Scholar
Zarhin, J. G., Noncommutative cohomology and Mumford groups , Math. Z. 15 (1974), 415419; MR 0354612 (50 #7090).Google Scholar
Zhang, W., Selmer groups and the indivisibility of Heegner points , Cambridge J. Math. 2 (2014), 191253.CrossRefGoogle Scholar