Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T23:52:32.682Z Has data issue: false hasContentIssue false

Lagrangian embeddings of cubic fourfolds containing a plane

Published online by Cambridge University Press:  23 March 2017

Genki Ouchi*
Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8914, Japan email [email protected]

Abstract

We prove that a very general smooth cubic fourfold containing a plane can be embedded into an irreducible holomorphic symplectic eightfold as a Lagrangian submanifold. We construct the desired irreducible holomorphic symplectic eightfold as a moduli space of Bridgeland stable objects in the derived category of the twisted K3 surface corresponding to the cubic fourfold containing a plane.

Type
Research Article
Copyright
© The Author 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, N., On two rationality conjectures for cubic fourfolds , Math. Res. Lett. 23 (2016), 113.Google Scholar
Addington, N. and Lehn, M., On the symplectic eightfold associated to a Pfaffian cubic fourfold, J. Reine Angew. Math., doi:10.1515/crelle-2014-0145, April 2015. Preprint (2014), arXiv:1404.5657.Google Scholar
Addington, N. and Thomas, R., Hodge theory and derived categories of cubic fourfolds , Duke Math. J. 163 (2014), 18851927.Google Scholar
Bayer, A. and Macri, E., Projectivity and birational geometry of Bridgeland moduli spaces , J. Amer. Math. Soc. 27 (2014), 707752.Google Scholar
Bayer, A. and Macri, E., MMP for moduli of sheaves on K3s via wall crossing: nef and movable cones, Lagrangian fibrations , Invent. Math. 198 (2014), 505590.Google Scholar
Beauville, A. and Donagi, R., La variété des droites d’une hypersurface cubique de dimension 4 , C. R. Acad. Sci. Paris. Sér. I Math. 301 (1985), 703706.Google Scholar
Bridgeland, T., Stability conditions on triangulated categories , Ann. of Math (2) 166 (2007), 317345.Google Scholar
Bridgeland, T., Stability conditions on K3 surfaces , Duke Math. J. 141 (2008), 241291.Google Scholar
Cǎldǎraru, A., Derived categories of twisted sheaves on Calabi–Yau manifolds, PhD thesis, Cornell University (2000).Google Scholar
Galkin, S. and Shinder, E., The Fano variety of lines and rationality problem for a cubic hypersurface, Preprint (2014), arXiv:1405.5154.Google Scholar
Hassett, B., Some rational cubic fourfolds , J. Algebraic Geom. 8 (1999), 103114.Google Scholar
Hassett, B., Special cubic fourfolds , Compositio Math. 120 (2000), 123.Google Scholar
Huybrechts, D., Macri, E. and Stellari, P., Stability conditions for generic K3 categories , Compositio Math. 144 (2008), 134162.Google Scholar
Huybrechts, D. and Stellari, P., Equivalences of twisted K3 surfaces , Math. Ann. 322 (2005), 901936.CrossRefGoogle Scholar
de Jong, J. and Starr, J., Cubic fourfolds and spaces of rational curves , Illinois J. Math. 48 (2004), 415450.Google Scholar
Kuznetsov, A., Derived categories of cubic and V14 threefolds , Proc. Steklov Inst. Math. 246 (2004), 183207.Google Scholar
Kuznetsov, A., Derived categories of quadric fibrations and intersections of quadrics , Adv. Math. 218 (2008), 13401369.Google Scholar
Kuznetsov, A., Derived categories of cubic fourfolds , in Cohomological and geometric approaches to rationality problems, Progress in Mathematics, vol. 282 (Birkhäuser, Boston, 2010), 219243.Google Scholar
Kuznetsov, A. and Markushevich, D., Symplectic structures on moduli spaces of sheaves via the Atiyah class , J. Geom. Phys. 59 (2009), 843860.Google Scholar
Lehn, C., Lehn, M., Sorger, C. and van Straten, D., Twisted cubics on cubic forfolds, J. Reine Angew. Math., doi:10.1515/crelle-2014-0144, April 2015. Preprint (2013), arXiv:1305.0178.Google Scholar
Macri, E. and Stellari, P., Fano varieties of cubic fourfolds containing a plane , Math. Ann. 354 (2012), 11471176.Google Scholar
Orlov, D., Derived categories of coherent sheaves and triangulated categories of singularities , in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, Progress in Mathematics, vol. 270 (Springer, New York, 2009), 503531.Google Scholar
Toda, Y., Moduli stacks and invariants of semistable objects on K3 surfaces , Adv. Math. 217 (2008), 27362781.CrossRefGoogle Scholar
Toda, Y., Gepner type stability condition via Orlov/Kuznetsov equivalence , Int. Math. Res. Not. IMRN 2016 (2016), 2482.Google Scholar
Tregub, S., Three constructions of rational cubic fourfolds , Moscow Univ. Math. Bull. 39 (1984), 816.Google Scholar
Tregub, S., Two remarks on four dimensional cubics , Russian Math. Surveys 48 (1993), 206208.Google Scholar