Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T00:32:21.941Z Has data issue: false hasContentIssue false

Hilbert modular forms and p-adic Hodge theory

Published online by Cambridge University Press:  21 September 2009

Takeshi Saito*
Affiliation:
Department of Mathematical Sciences, University of Tokyo, Tokyo 153-8914, Japan (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the p-adic Galois representation associated to a Hilbert modular form, Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a finite place not dividing p is compatible with the local Langlands correspondence. Under the same assumption, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also prove that the monodromy-weight conjecture holds for such representations.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Blasius, D. and Rogawski, J., Motives for Hilbert modular forms, Invent. Math. 114 (1993), 5587.Google Scholar
[2]Carayol, H., Sur la mauvaise réduction des courbes de Shimura, Compositio Math. 59 (1986), 151230.Google Scholar
[3]Carayol, H., Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), 409468.CrossRefGoogle Scholar
[4]Crew, R., F-isocrystals and their monodromy groups, Ann. Sci. École Norm. Sup. (4) 25 (1992), 429464.CrossRefGoogle Scholar
[5]de Jong, A. J., Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 5193.CrossRefGoogle Scholar
[6]Deligne, P., Travaux de Shimura, in Séminaire Bourbaki, Fév. 1971, exp. 389, Lecture Notes in Mathematics, vol. 244 (Springer, Berlin, 1971), 123165.Google Scholar
[7]Deligne, P., Formes modulaires et représentations de GL(2), in Modular Forms of One Variable II, Lecture Notes in Mathematics, vol. 349, eds P. Deligne and W. Kuyk (Springer, Berlin, 1973), 55105.Google Scholar
[8]Deligne, P. and Mumford, D., The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 75109.Google Scholar
[9]Fontaine, J.-M., Représentations -adiques potentiellement semi-stables, in Périodes p-adiques, Astérisque 223 (1994), 321348.Google Scholar
[10]Gillet, H. and Messing, W., Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J. 55 (1987), 501538.CrossRefGoogle Scholar
[11]Gros, M., Classes de Chern et classes de cycles en cohomologie logarithmique, Bull. Soc. Math. France 113 (1985).Google Scholar
[12]Grothendieck, A., Un théorème sur les homomorphismes de schémas abeliens, Invent. Math. 2 (1966), 5978.CrossRefGoogle Scholar
[13]Illusie, L., Autour du théorème de monodromie locale, in Périodes p-adiques, Astérisque 223 (1994), 958.Google Scholar
[14]Jacquet, H. and Langlands, R. P., Automorphic forms on GL 2, Lecture Notes in Mathematics, vol. 114 (Springer, Berlin, 1970).CrossRefGoogle Scholar
[15]Kisin, M., Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), 513546.Google Scholar
[16]Liu, T., Lattices in filtered (φ,N)-modules, Preprint,http://www.math.purdue.edu/∼tongliu/pub/wd.pdf.Google Scholar
[17]Milne, J. S., Canonical models of (mixed) Shimura varieties and automorphic vector bundles in automorphic forms, Shimura varieties and L-functions, I (Academic Press, New York, 1990), 284414.Google Scholar
[18]Mokrane, A., La suite spectrale des poids en cohomologie de Hyodo–Kato, Duke Math. J. 72 (1993), 301377.CrossRefGoogle Scholar
[19]Ohta, M., On -adic representations attached to automorphic forms, Japan. J. Math. 9-1 (1982), 147.Google Scholar
[20]Rapoport, M. and Zink, T., Über die lokale Zetafunktion von Shimuravarietäten, Monodromiefiltration und verschwindende Zyklen in ungleicher Characteristik, Invent. Math. 68 (1982), 21201.CrossRefGoogle Scholar
[21]Rogawski, J. and Tunnell, J., On Artin L-functions associated to Hilbert modular forms of weight one, Invent. Math. 74 (1983), 142.CrossRefGoogle Scholar
[22]Saito, T., Modular forms and p-adic Hodge theory, Invent. Math. 129 (1997), 607620.CrossRefGoogle Scholar
[23]Saito, T., Weight-monodromy conjecture for -adic representations associated to modular forms, A supplement to the paper  in The arithmetic and geometry of algebraic cycles, Banff, Alberta, 7–19 June 1998, eds B. B. Gordon et al. (Springer, 2000), 427–431.CrossRefGoogle Scholar
[24]Taylor, R., On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265280.CrossRefGoogle Scholar
[25]Taylor, R., On Galois representations associated to Hilbert modular forms. II, in Conference on Elliptic curve and modular forms, Chinese University of Hong Kong, 18–21 December 1993, eds J. Coates and S. T. Yau (International Press, Cambridge, MA, 1995), 185–191.Google Scholar
[26]Tsuji, T., p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), 233411.CrossRefGoogle Scholar