Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:45:52.976Z Has data issue: false hasContentIssue false

A higher-dimensional generalization of Lichtenbaum duality in terms of the Albanese map

Published online by Cambridge University Press:  14 July 2016

Wataru Kai*
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan email [email protected]

Abstract

In this article, we present a conjectural formula describing the cokernel of the Albanese map of zero-cycles of smooth projective varieties $X$ over $p$ -adic fields in terms of the Néron–Severi group and provide a proof under additional assumptions on an integral model of $X$ . The proof depends on a non-degeneracy result of Brauer–Manin pairing due to Saito–Sato and on Gabber–de Jong’s comparison result of cohomological and Azumaya–Brauer groups. We will also mention the local–global problem for the Albanese cokernel; the abelian group on the ‘local side’ turns out to be a finite group.

Type
Research Article
Copyright
© The Author 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, A. and Kleiman, S., Bertini theorems for hypersurface sections containing a subscheme , Comm. Algebra 7 (1979), 775790.Google Scholar
Barbieri-Viale, L. and Kahn, B., On the derived category of 1-motives, Astérisque, to appear, Preprint (2010), arXiv:1009.1900.Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Bd. 21 (Springer, Berlin–Heidelberg, 2010).Google Scholar
de Jong, A. J., A result of Gabber, Preprint, available athttp://www.math.columbia.edu/∼dejong/.Google Scholar
Gabber, O., On space filling curves and Albanese varieties , Geom. Funct. Anal. 11 (2001), 11921200.Google Scholar
Grothendieck, A., Le groupe de Brauer I, II, III , in Dix exposés sur la cohomologie des schémas (North-Holland, Amsterdam, 1968).Google Scholar
Kato, K. and Saito, S., Unramified class field theory of arithmetical surfaces , Ann. of Math. (2) 118 (1983), 241275.Google Scholar
Kleiman, S., The Picard scheme , in Fundamental algebraic geometry. Grothendieck’s FGA explained, Mathematical Surveys and Monographs, vol. 123 (American Mathematical Society, Providence, RI, 2005), 235321.Google Scholar
Knus, M. A. and Ojanguren, M., Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, vol. 389 (Springer, Berlin–Heidelberg, 1974).Google Scholar
Lang, S., Abelian varieties, Interscience Tracts in Pure and Applied Mathematics, vol. 7 (Interscience, New York–London, 1959).Google Scholar
Lichtenbaum, S., Duality theorems for curves over p-adic fields , Invent. Math. 7 (1969), 120136.CrossRefGoogle Scholar
Manin, Y., Le groupe de Brauer–Grothendieck en géométrie diophantienne , in Actes du Congrès International des Mathématiciens, Nice, 1970, Tome 1 (Gauthier-Villars, Paris, 1971), 401411.Google Scholar
Mattuck, A., Abelian varieties over p-adic ground fields , Ann. of Math. (2) 62 (1955), 92119.Google Scholar
Milne, J. S., Arithmetic duality theorems, second edition (BookSurge, North Charleston, SC, 2006).Google Scholar
Rosenschon, A. and Østvær, P. A., Rigidity of pseudo pretheories , Invent. Math. 166 (2006), 95102.Google Scholar
Saito, S. and Sato, K., A finiteness theorem for zero-cycles over p-adic fields. With an appendix by U. Jannsen , Ann. of Math. (2) 172 (2010), 593639.Google Scholar
Saito, S. and Sato, K., Zero-cycles on varieties over p-adic fields and Brauer groups , Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 505537.Google Scholar
Saito, S. and Sujatha, R., A finiteness theorem for cohomology of surfaces over p-adic fields and an application to Witt groups , in K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992), Proceedings of Symposia in Pure Mathematics, vol. 58, part 2 (American Mathematical Society, Providence, RI, 1995), 403415.Google Scholar
Spieß, M. and Szamuely, T., On the Albanese map for smooth quasi-projective varieties , Math. Ann. 325 (2003), 117.Google Scholar
Tate, J., WC-groups over p-adic fields , Sém. Bourbaki 156 (1956–1958), 265277.Google Scholar
van Hamel, J., Lichtenbaum–Tate duality for varieties over p-adic fields , J. Reine Angew. Math. 575 (2004), 101134.Google Scholar
Voevodsky, V., Cohomological theory of presheaves with transfers , in Cycles, transfers, and motivic homology theories, Annals of Mathematics Studies, vol. 143 (Princeton University Press, Princeton, NJ, 2000).Google Scholar