Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T22:53:27.775Z Has data issue: false hasContentIssue false

Generic Torelli theorem for Prym varieties of ramified coverings

Published online by Cambridge University Press:  11 July 2012

Valeria Ornella Marcucci
Affiliation:
Dipartimento di Matematica ‘F. Casorati’, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy (email: [email protected])
Gian Pietro Pirola
Affiliation:
Dipartimento di Matematica ‘F. Casorati’, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the Prym map from the space of double coverings of a curve of genus g with r branch points to the moduli space of abelian varieties. We prove that 𝒫:ℛg,r→𝒜δg−1+r/2 is generically injective if We also show that a very general Prym variety of dimension at least 4 is not isogenous to a Jacobian.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[And58]Andreotti, A., On a theorem of Torelli, Amer. J. Math. 80 (1958), 801828.CrossRefGoogle Scholar
[ACGH85]Arbarello, E., Cornalba, M., Griffiths, P. A. and Harris, J., Geometry of algebraic curves. Volume I, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 267 (Springer, New York, 1985).CrossRefGoogle Scholar
[BCV95]Bardelli, F., Ciliberto, C. and Verra, A., Curves of minimal genus on a general abelian variety, Compositio Math. 96 (1995), 115147.Google Scholar
[BP89]Bardelli, F. and Pirola, G. P., Curves of genus g lying on a g-dimensional Jacobian variety, Invent. Math. 95 (1989), 263276.CrossRefGoogle Scholar
[Bea77a]Beauville, A., Prym varieties and the Schottky problem, Invent. Math. 41 (1977), 149196.CrossRefGoogle Scholar
[Bea77b]Beauville, A., Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 309391.CrossRefGoogle Scholar
[Bea83]Beauville, A., Complex algebraic surfaces, London Mathematical Society Lecture Note Series, vol. 68 (Cambridge University Press, Cambridge, 1983), translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid.Google Scholar
[BP02]Biswas, I. and Paranjape, K. H., The Hodge conjecture for general Prym varieties, J. Algebraic Geom. 11 (2002), 3339.CrossRefGoogle Scholar
[CG80]Carlson, J. and Griffiths, P., Infinitesimal variations of Hodge structure and the global Torelli problem, in Journées de géometrie algébrique d’Angers (juillet 1979): algebraic geometry Angers 1979 (Sijthoff & Noordhoff, Alphen aan den Rijn, 1980), 5176.Google Scholar
[Cha85]Chai, C.-L., Compactification of Siegel moduli schemes, London Mathematical Society Lecture Note Series, vol. 107 (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
[Deb89]Debarre, O., Sur le probleme de Torelli pour les varieties de Prym, Amer. J. Math. 111 (1989), 111134.CrossRefGoogle Scholar
[DR89]Del Centina, A. and Recillas, S., On a property of the Kummer variety and a relation between two moduli spaces of curves, in Algebraic geometry and complex analysis (Pátzcuaro, 1987), Lecture Notes in Mathematics, vol. 1414 (Springer, Berlin, 1989), 2850.CrossRefGoogle Scholar
[Don81]Donagi, R., The tetragonal construction, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 181185.CrossRefGoogle Scholar
[DS81]Donagi, R. and Smith, R. C., The structure of the Prym map, Acta Math. 146 (1981), 25102.CrossRefGoogle Scholar
[FC90]Faltings, G. and Chai, C.-L., Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Results in Mathematics and Related Areas (3)), vol. 22 (Springer, Berlin, 1990), with an appendix by David Mumford.CrossRefGoogle Scholar
[FK80]Farkas, H. M. and Kra, I., Riemann surfaces, Graduate Texts in Mathematics, vol. 71 (Springer, New York, 1980).CrossRefGoogle Scholar
[FS82]Friedman, R. and Smith, R., The generic Torelli theorem for the Prym map, Invent. Math. 67 (1982), 473490.CrossRefGoogle Scholar
[FS86]Friedman, R. and Smith, R., Degenerations of Prym varieties and intersections of three quadrics, Invent. Math. 85 (1986), 615635.CrossRefGoogle Scholar
[GL85]Green, M. and Lazarsfeld, R., On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1985), 7390.CrossRefGoogle Scholar
[GT84]Griffiths, P. and Tu, L., Infinitesimal variation of Hodge structure and the generic global Torelli theorem, in Topics in transcendental algebraic geometry (Princeton, NJ, 1981/1982), Annals of Mathematics Studies, vol. 106 (Princeton University Press, Princeton, NJ, 1984), 227237.CrossRefGoogle Scholar
[Gro67]Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967), 5361.Google Scholar
[Gru09]Grushevsky, S., Geometry of 𝒜g and its compactifications, in Algebraic geometry—Seattle 2005. Part 1, Proceedings of Symposia in Pure Mathematics, vol. 80 (American Mathematical Society, Providence, RI, 2009), 193234.Google Scholar
[HM98]Harris, J. and Morrison, I., Moduli of curves, Graduate Texts in Mathematics, vol. 187 (Springer, New York, 1998).Google Scholar
[HM82]Harris, J. and Mumford, D., On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), 2388, with an appendix by William Fulton.CrossRefGoogle Scholar
[Har77]Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977).CrossRefGoogle Scholar
[Kan82]Kanev, V. I., A global Torelli theorem for Prym varieties at a general point, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 244268.Google Scholar
[Kan04]Kanev, V., Hurwitz spaces of triple coverings of elliptic curves and moduli spaces of abelian threefolds, Ann. Mat. Pura Appl. (4) 183 (2004), 333374.CrossRefGoogle Scholar
[LO11]Lange, H. and Ortega, A., Prym varieties of cyclic coverings, Geom. Dedicata 150 (2011), 391403.CrossRefGoogle Scholar
[LS96]Lange, H. and Sernesi, E., Quadrics containing a Prym-canonical curve, J. Algebraic Geom. 5 (1996), 387399.Google Scholar
[Laz89]Lazarsfeld, R., A sampling of vector bundle techniques in the study of linear series, in Lectures on Riemann surfaces (Trieste, 1987) (World Scientific, Teaneck, NJ, 1989), 500559.CrossRefGoogle Scholar
[Mar]Marcucci, V., On the genus of curves in a Jacobian variety. Ann. Sc. Norm. Super. Pisa Cl. Sci., to appear.Google Scholar
[Mar11]Marcucci, V., Curves in Jacobian and Prym varieties. PhD thesis, Università degli Studi di Pavia (2011).Google Scholar
[MN11]Marcucci, V. and Naranjo, J. C., Prym varieties of double coverings of elliptic curves, Preprint (2011), available at http://arxiv.org/abs/1111.3340.Google Scholar
[Mat80]Matsumura, H., Commutative algebra, Mathematics Lecture Note Series, vol. 56, second edition (Benjamin Cummings, Reading, MA, 1980).Google Scholar
[Mum74]Mumford, D., Prym varieties. I, in Contributions to analysis (a collection of papers dedicated to Lipman Bers) (Academic Press, New York, 1974), 325350.Google Scholar
[NR95]Nagaraj, D. S. and Ramanan, S., Polarisations of type (1,2,…,2) on abelian varieties, Duke Math. J. 80 (1995), 157194.CrossRefGoogle Scholar
[Nam76a]Namikawa, Y., A new compactification of the Siegel space and degeneration of Abelian varieties. I, Math. Ann. 221 (1976), 97141.CrossRefGoogle Scholar
[Nam76b]Namikawa, Y., A new compactification of the Siegel space and degeneration of Abelian varieties. II, Math. Ann. 221 (1976), 201241.CrossRefGoogle Scholar
[Nam80]Namikawa, Y., Toroidal compactification of Siegel spaces, Lecture Notes in Mathematics, vol. 812 (Springer, Berlin, 1980).CrossRefGoogle Scholar
[Nar92]Naranjo, J. C., Prym varieties of bi-elliptic curves, J. Reine Angew. Math. 424 (1992), 47106.Google Scholar
[Nar96]Naranjo, J. C., The positive-dimensional fibres of the Prym map, Pacific J. Math. 172 (1996), 223226.CrossRefGoogle Scholar
[NP94]Naranjo, J. C. and Pirola, G. P., On the genus of curves in the generic Prym variety, Indag. Math. (N.S.) 5 (1994), 101105.CrossRefGoogle Scholar
[Pir88]Pirola, G. P., Base number theorem for abelian varieties. An infinitesimal approach, Math. Ann. 282 (1988), 361368.CrossRefGoogle Scholar
[Sai72]Saint-Donat, B., Sur les équations définissant une courbe algébrique, C. R. Acad. Sci. Paris Sér. A–B 274 (1972), A324A327.Google Scholar
[Ser88]Serre, J.-P., Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117 (Springer, New York, 1988), translated from the French.CrossRefGoogle Scholar
[SV02]Smith, R. and Varley, R., The Prym Torelli problem: an update and a reformulation as a question in birational geometry, in Symposium in honor of C. H. Clemens (Salt Lake City, UT, 2000), Contemporary Mathematics, vol. 312 (American Mathematical Society, Providence, RI, 2002), 235264.CrossRefGoogle Scholar
[Usu91]Usui, S., Period maps and their extensions, Sci. Rep. College Gen. Ed. Osaka Univ. 40 (1991), 2137.Google Scholar
[Ver01]Verra, A., The degree of the Gauss map for a general Prym theta-divisor, J. Algebraic Geom. 10 (2001), 219246.Google Scholar