Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T02:29:10.431Z Has data issue: false hasContentIssue false

Galois representations attached to automorphic forms on ${\rm GL}_2$ over ${\rm CM}$ fields

Published online by Cambridge University Press:  26 March 2014

Chung Pang Mok*
Affiliation:
Hamilton Hall, McMaster University, Hamilton, Ontario, L8S 4K1, Canada email [email protected]

Abstract

In this paper we generalize the work of Harris–Soudry–Taylor and construct the compatible systems of two-dimensional Galois representations attached to cuspidal automorphic representations of cohomological type on ${\rm GL}_2$ over a CM field with a suitable condition on their central characters. We also prove a local-global compatibility statement, up to semi-simplification.

Type
Research Article
Copyright
© The Author 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, J., The endoscopic classification of representations: orthogonal and symplectic groups, Colloquium Publication Series (AMS), to appear, available athttp://www.claymath.org/cw/arthur/.Google Scholar
Arthur, J., Automorphic representations of GSp(4), in Contributions to automorphic forms, geometry, and number theory (Johns Hopkins University Press, Baltimore, MD, 2004), 6581.Google Scholar
Arthur, J. and Clozel, L., Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120 (Princeton University Press, Princeton, NJ, 1989).Google Scholar
Asgari, M. and Shahidi, F., Generic transfer from GSp(4) to GL(4), Compositio Math. 142 (2006), 541550.Google Scholar
Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., Local-global compatibility for l = p I, Ann. Fac. Sci. Toulouse Math. (6) 21 (2012), 5792.Google Scholar
Barnet-Lamb, T., Gee, T., Geraghty, D. and Taylor, R., Local-global compatibility for l = p II, Ann. Sci. Éc. Norm. Supér. (4) to appear.Google Scholar
Bellaïche, J. and Chenevier, G., Families of Galois representations and Selmer groups, Astérisque 324 (2009).Google Scholar
Bellaïche, J. and Chenevier, G., The sign of Galois representations attached to automorphic forms for unitary groups, Compositio Math. 147 (2011), 13371352.CrossRefGoogle Scholar
Berger, T. and Harcos, G., l-adic representations associated to modular forms over imaginary quadratic fields, Int. Math. Res. Not. IMRN 2007 (2007), doi:10.1093/imrn/rnm113.Google Scholar
Calegari, F. and Gee, T., Irreducibility of automorphic Galois representations of ${\rm GL}(n)$, $n$at most $5$. Ann. Inst. Fourier, to appear.Google Scholar
Caraiani, A., Local-global compatibility and the action of monodromy on nearby cycles, Duke Math. J. 161 (2012), 23112413.Google Scholar
Caraiani, A., Monodromy and local-global compatibility for $l=p$, Preprint (2012),arXiv:1202.4683.Google Scholar
Chan, P. S., Invariant representations of GSp(2) under tensor product with a quadratic character, Mem. Amer. Math. Soc. 204 (2010).Google Scholar
Chan, P. S. and Gan, W. T., The local Langlands conjecture for ${\rm GSp} (4)$III: stability and twisted endoscopy, J. Number Theory, Rallis Memorial Volume, to appear, available athttp://www.math.nus.edu.sg/ matgwt/.Google Scholar
Chenevier, G., Une application des variétés de Hecke des groupes unitaires, Preprint, available at http://www.math.polytechnique.fr/ chenevier/pub.html.Google Scholar
Chenevier, G. and Harris, M., Construction of automorphic Galois representations II, Cambridge Math. J. 1 (2013), 5373.Google Scholar
Fontaine, J.-M., Arithmétique des représentations galoisiennes p-adiques, Astérisque 295 (2004), 1115.Google Scholar
Gan, W. T., The Saito–Kurokawa space of  PGSp4and its transfer to inner forms, in Eisenstein series and applications, 87123, Progress in Mathematics, vol. 258 (Birkhäuser Boston, Boston, MA, 2008).CrossRefGoogle Scholar
Gan, W. T. and Takeda, S., Theta correspondence for GSp(4), Represent. Theory 15 (2011), 670718.Google Scholar
Gan, W.T. and Takeda, S., The local Langlands conjecture for GSp(4), Ann. of Math. (2) 173 (2011), 18411882.Google Scholar
Ginzburg, D., Rallis, S. and Soudry, D., Periods, poles of L-functions and symplectic-orthogonal theta lifts, J. Reine Angew. Math. 487 (1997), 85114.Google Scholar
Harris, M., Lan, K. W., Taylor, R. and Thorne, J., On the rigid cohomology of certain Shimura varieties, Preprint (2013).Google Scholar
Harris, M., Soudry, D. and Taylor, R., l-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to GSp4(Q), Invent. Math. 112 (1993), 377411.Google Scholar
Hida, H., Anticyclotomic main conjectures, Doc. Math. (2006), 465532.Google Scholar
Jacquet, H. and Shalika, J., On Euler products and the classification of automorphic forms, II, Amer. J. Math. 103 (1981), 777815.Google Scholar
Jorza, A., Crystalline representations for ${\rm GL}(2)$over quadratic imaginary fields, PhD thesis, Princeton University (2010).Google Scholar
Kisin, M. and Lai, K. F., Overconvergent Hilbert modular forms, Amer. J. Math. 127 (2005), 735783.Google Scholar
Laumon, G., Fonctions zetas des variétés de Siegel de dimension trois, Astérisque 302 (2005), 166.Google Scholar
Mok, C. P. and Tan, F. C., Overconvergent family of Siegel–Hilbert modular forms, Preprint (2012), arXiv:1208.1093.Google Scholar
Nakamura, K., Zariski density of crystalline representations for any $p$-adic field, Preprint (2011), arXiv:1104.1760v1.Google Scholar
Roberts, B., Global L-packets for GSp(2) and theta lifts, Doc. Math. 6 (2001), 247314.Google Scholar
Saito, T., Modular forms and p-adic Hodge theory, Invent. Math. 129 (1997), 607620.Google Scholar
Schmidt, R., The Saito–Kurokawa lifting and functoriality, Amer. J. Math. 127 (2005), 209240.Google Scholar
Scholze, P., On torsion in the cohomology of locally symmetric varieties, Preprint (2013),arXiv:1306.2070.Google Scholar
Sen, S., An infinite-dimensional Hodge–Tate theory, Bull. Soc. Math. France 121 (1993), 1334.Google Scholar
Shahidi, F., On certain L-functions, Amer. J. Math. 103 (1981), 297355.Google Scholar
Shahidi, F., On non-vanishing of twisted symmetric and exterior square L-functions for GL(n). Olga Taussky-Todd: in memoriam, Pacific J. Math. (1997), 311322.Google Scholar
Shin, S. W., Galois representations arising from some compact Shimura varieties, Ann. of Math. (2) 173 (2011), 16451741.Google Scholar
Sorensen, C., Galois representations attached to Hilbert–Siegel modular forms, Doc. Math. 15 (2010), 623670.CrossRefGoogle Scholar
Soudry, D., Automorphic forms on GSp(4), in Festschrift in honor of I. I. Piatetski–Shapiro, Part II (Ramat Aviv, 1989), Israel Mathematical Conference Proceedings, vol. 3 (Weizmann, Jerusalem, 1990), 291303.Google Scholar
Soudry, D., On Langlands functoriality from classical groups to GLn. Automorphic forms. I, Astérisque 298 (2005), 335390.Google Scholar
Sally, P. and Tadic, M., Induced representations and classifications for GSp(2,F) and Sp(2,F), Mém. Soc. Math. Fr. (N.S.) (1993), 75133.Google Scholar
Takeda, S., Some local-global non-vanishing results of theta lifts for symplectic-orthogonal dual pairs, J. Reine Angew. Math. 657 (2011), 81111.Google Scholar
Tan, F. C., Families of $p$-adic Galois Representations, PhD thesis, MIT (2011).Google Scholar
Taylor, R., Galois representations associated to Siegel modular forms of low weight, Duke Math. J. 63 (1991), 281332.Google Scholar
Taylor, R., l-adic representations associated to modular forms over imaginary quadratic fields. II, Invent. Math. 116 (1994), 619643.CrossRefGoogle Scholar
Wallach, N., On the constant term of a square integrable automorphic form, in Operator algebras and group representations, Vol. II (Neptun, 1980), Monographs Studies in Mathematics, vol. 18 (Pitman, Boston, MA, 1984), 227237.Google Scholar
Weissauer, R., Four dimensional Galois representations, Astérisque 302 (2005), 67150.Google Scholar