Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T15:48:26.229Z Has data issue: false hasContentIssue false

Exit paths and constructible stacks

Published online by Cambridge University Press:  21 September 2009

David Treumann*
Affiliation:
127 Vincent Hall, 206 Church St. S.E., Minneapolis, MN 55455, USA (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a Whitney stratification S of a space X (or, more generally, a topological stratification in the sense of Goresky and MacPherson) we introduce the notion of an S-constructible stack of categories on X. The motivating example is the stack of S-constructible perverse sheaves. We introduce a 2-category EP≤2(X,S), called the exit-path 2-category, which is a natural stratified version of the fundamental 2-groupoid. Our main result is that the 2-category of S-constructible stacks on X is equivalent to the 2-category of 2-functors 2Funct(EP≤2(X,S),Cat) from the exit-path 2-category to the 2-category of small categories.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, Astérisque 100 (1982).Google Scholar
[2]Braden, T., Perverse sheaves on Grassmannians, Canad. J. Math. 54 (2002).CrossRefGoogle Scholar
[3]Braden, T. and Grinberg, M., Perverse sheaves on rank stratifications, Duke Math. J. 96 (1999).CrossRefGoogle Scholar
[4]Gelfand, S., MacPherson, R. and Vilonen, K., Perverse sheaves and quivers, Duke Math. J. 83 (1996).CrossRefGoogle Scholar
[5]Goresky, M. and MacPherson, R., Intersection homology II, Invent. Math. 72 (1983).CrossRefGoogle Scholar
[6]Grothendieck, A., Pursuing stacks. Unpublished manuscript dated 1983.Google Scholar
[7]MacPherson, R. and Vilonen, K., Elementary construction of perverse sheaves, Invent. Math. 84 (1986).CrossRefGoogle Scholar
[8]Mather, J., Stratifications and mappings, in Dynamical systems (Academic Press, New York, 1973).Google Scholar
[9]Milnor, J., Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2) (1961), 575590.CrossRefGoogle Scholar
[10]Polesello, P. and Waschkies, I., Higher monodromy, Homology Homotopy Appl. 7(1) (2005), 109150.CrossRefGoogle Scholar
[11]Quinn, F., Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988).CrossRefGoogle Scholar
[12]Siebenmann, L., Deformations of homeomorphisms on stratified sets, Comm. Math. Helv. 47 (1972).CrossRefGoogle Scholar
[13]Thom, R., Ensembles et morphismes stratifiées, Bull. Amer. Math. Soc. 75 (1969).CrossRefGoogle Scholar
[14]Toen, B., Vers une interprétation galoisienne de la théorie de l’homotopie, Cah. Topol. Géom. Différ. Catég. 43(4) (2002), 257312.Google Scholar
[15]Treumann, D., Exit paths and constructible stacks. Preprint (2007), available at http://arxiv.org/abs/0708.0659.Google Scholar
[16]Treumann, D., Stacks similar to the stack of perverse sheaves, Trans. Amer. Math. Soc., to appear. Preprint (2008), available at http://www.arxiv.org/abs/0801.3016.Google Scholar
[17]Vybornov, M., Perverse sheaves, Koszul IC-modules, and the quiver for category 𝒪, Invent. Math. 167 (2007).Google Scholar