Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T11:44:33.507Z Has data issue: false hasContentIssue false

Conjecture de monodromie-poids pour quelques variétés de Shimura unitaires

Published online by Cambridge University Press:  26 January 2010

Pascal Boyer*
Affiliation:
Institut de mathématiques de Jussieu, Université Paris 6, 4 place Jussieu, 75005 Paris, France (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Boyer [Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties, Invent. Math. 177 (2009), 239–280 (in French)], a sheaf version of the monodromy-weight conjecture for some unitary Shimura varieties was proved by giving explicitly the monodromy filtration of the complex of vanishing cycles in terms of local systems introduced in Harris and Taylor [The geometry and cohomology of some simple Shimura varieties (Princeton University Press, Princeton, NJ, 2001)]. The main result of this paper is the cohomological version of the monodromy-weight conjecture for these Shimura varieties, which we prove by means of an explicit description of the groups of cohomology in terms of automorphic representations and the local Langlands correspondence.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Boyer, P., Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale, Invent. Math. 138 (1999), 573629.CrossRefGoogle Scholar
[2]Boyer, P., Faisceaux pervers des cycles évanescents des variétés de Drinfeld et groupes de cohomologies du modèle de Deligne-Carayol, Mém. Soc. Math. Fr. (N.S.) 116 (2009).Google Scholar
[3]Boyer, P., Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177 (2009), 239280 (Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties, in French).Google Scholar
[4]Fargues, L., Dualité de Poincaré et involution de Zelevinsky dans la cohomologie étale équivariante des espaces analytiques rigides, Preprint (2006), http://www.math.u-psud.fr/∼fargues/Dualite.dvi .Google Scholar
[5]Harris, R. and Taylor, M., The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001).Google Scholar
[6]Henniart, G., Une preuve simple des conjectures de Langlands pour GLn sur un corps p-adique, Invent. Math. 139 (2000), 439455 (A simple proof of Langlands conjectures for GLn on a p-adic field, in French).CrossRefGoogle Scholar
[7]Moeglin, C. and Waldspurger, J.-L., Décomposition spectrale et séries d’Eisenstein: Une paraphrase de l’écriture, Progress in Mathematics, vol. 113 (Birkhäuser, Basel, 1994), (Spectral decomposition and Eisenstein series, in French).Google Scholar
[8]Zelevinsky, A. V., Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165210;MR 584084 (83g:22012).CrossRefGoogle Scholar