Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T23:45:52.976Z Has data issue: false hasContentIssue false

Cluster algebras via cluster categories with infinite-dimensional morphism spaces

Published online by Cambridge University Press:  28 September 2011

Pierre-Guy Plamondon*
Affiliation:
Institut de Mathématiques de Jussieu, Université Paris Diderot – Paris 7, UMR 7586 du CNRS, Case 7012, Bâtiment Chevaleret, 75205 Paris Cedex 13, France (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We apply our previous work on cluster characters for Hom-infinite cluster categories to the theory of cluster algebras. We give a new proof of Conjectures 5.4, 6.13, 7.2, 7.10 and 7.12 of Fomin and Zelevinsky’s Cluster algebras IV [Compositio Math. 143 (2007), 112–164] for skew-symmetric cluster algebras. We also construct an explicit bijection sending certain objects of the cluster category to the decorated representations of Derksen, Weyman and Zelevinsky, and show that it is compatible with mutations in both settings. Using this map, we give a categorical interpretation of the E-invariant and show that an arbitrary decorated representation with vanishing E-invariant is characterized by its g-vector. Finally, we obtain a substitution formula for cluster characters of not necessarily rigid objects.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[Ami09]Amiot, C., Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier 59 (2009), 25252590.CrossRefGoogle Scholar
[BFZ05]Berenstein, A., Fomin, S. and Zelevinsky, A., Cluster algebras III: upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 152.CrossRefGoogle Scholar
[Bou71]Bourbaki, N., Éléments de mathématiques – Topologie générale, chapitres 1 à 4 (Hermann, Paris, 1971).Google Scholar
[Bri10]Bridgeland, T., An introduction to motivic Hall algebras, arXiv:1002.4372v1 [math.AG].Google Scholar
[BMRRT06]Buan, A. B., Marsh, R., Reineke, M., Reiten, I. and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572618.CrossRefGoogle Scholar
[CC06]Caldero, P. and Chapoton, F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595616.CrossRefGoogle Scholar
[CCS06]Caldero, P., Chapoton, F. and Schiffler, R., Quivers with relations arising from clusters (A n case), Trans. Amer. Math. Soc. 358 (2006), 13471364.CrossRefGoogle Scholar
[CK08]Caldero, P. and Keller, B., From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169211.CrossRefGoogle Scholar
[Cer11]Cerulli Irelli, G., Cluster algebras of type A (1)2, Algebr. Represent. Theory (2011), doi:10.1007/s10468-011-9275-5.CrossRefGoogle Scholar
[DK08]Dehy, R. and Keller, B., On the combinatorics of rigid objects in 2-Calabi–Yau categories, Int. Math. Res. Not. 2008 (2008), rnn029-17.Google Scholar
[Dem10]Demonet, L., Categorification of skew-symmetrizable cluster algebras, Algebr. Represent. Theory (2010), doi:10.1007/s10468-010-9228-4.CrossRefGoogle Scholar
[DWZ08]Derksen, H., Weyman, J. and Zelevinsky, A., Quivers with potentials and their representations I: mutations, Selecta Math. (N.S.) 14 (2008), 59119.CrossRefGoogle Scholar
[DWZ10]Derksen, H., Weyman, J. and Zelevinsky, A., Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749790.CrossRefGoogle Scholar
[DXX09]Ding, M., Xiao, J. and Xu, F., Integral bases of cluster algebras and representations of tame quivers, arXiv:0901.1937v1 [math.RT].Google Scholar
[Dup11]Dupont, G., Generic variables in acyclic cluster algebras, J. Pure Appl. Algebra 215 (2011), 628641.CrossRefGoogle Scholar
[Fom]Fomin, S., Total positivity and cluster algebras, in Proceedings of the ICM 2010, Hyderabad.Google Scholar
[FZ02]Fomin, S. and Zelevinsky, A., Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002), 497529.CrossRefGoogle Scholar
[FZ07]Fomin, S. and Zelevinsky, A., Cluster algebras IV: coefficients, Compositio Math. 143 (2007), 112164.CrossRefGoogle Scholar
[FK10]Fu, C. and Keller, B., On cluster algebras with coefficients and 2-Calabi–Yau categories, Trans. Amer. Math. Soc. 362 (2010), 859895.CrossRefGoogle Scholar
[GLS07]Geiss, C., Leclerc, B. and Schröer, J., Cluster algebra structures and semicanonical bases for unipotent groups, arXiv:math/0703039v3 [math.RT].Google Scholar
[GLS08]Geiss, C., Leclerc, B. and Schröer, J., Preprojective algebras and cluster algebras, in Trends in representation theory of algebras and related topics, EMS Series of Congress Reports, vol. 1 (European Mathematical Society, Zürich, 2008), 253283.CrossRefGoogle Scholar
[GSV03]Gekhtman, M., Shapiro, M. and Vainshtein, A., Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), 899934.CrossRefGoogle Scholar
[Gin06]Ginzburg, V., Calabi–Yau algebras, arXiv:math/0612139v3 [math.AG].Google Scholar
[IIKKN10a]Inoue, R., Iyama, O., Keller, B., Kuniba, A. and Nakanishi, T., Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras I: type B r, arXiv:1001.1880v2 [math.QA].Google Scholar
[IIKKN10b]Inoue, R., Iyama, O., Keller, B., Kuniba, A. and Nakanishi, T., Periodicities of T and Y-systems, dilogarithm identities, and cluster algebras II: types C r, F 4, and G 2, arXiv:1001.1881v2 [math.QA].Google Scholar
[JS08]Joyce, D. and Song, Y., A theory of generalized Donaldson–Thomas invariants, Mem. Amer. Math. Soc., to appear, arXiv:0810.5645v4 [math.AG].Google Scholar
[Kel94]Keller, B., Deriving DG categories, Ann. Sci. Éc. Norm. Supér 27 (1994), 63102.CrossRefGoogle Scholar
[Kel09]Keller, B., Algèbres amassées et applications, Séminaire Bourbaki, Exposé 1014, 2009, 27 pages.Google Scholar
[Kel10]Keller, B., The periodicity conjecture for pairs of Dynkin diagrams, arXiv:1001.1531v3 [math.RT].Google Scholar
[KY11]Keller, B. and Yang, D., Derived equivalences from mutations of quivers with potential, Adv. Math. 226 (2011), 21182168.CrossRefGoogle Scholar
[KS08]Kontsevich, M. and Soibelman, Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv:0811.2435v1 [math.AG].Google Scholar
[Lec]Leclerc, B., Cluster algebras and representation theory, in Proceedings of the ICM 2010, Hyderabad.Google Scholar
[Nag10]Nagao, K., Cluster algebras via Donaldson–Thomas theory, arXiv:1002.4884v2 [math.AG].Google Scholar
[Pal08]Palu, Y., Cluster characters for 2-Calabi–Yau triangulated categories, Ann. Inst. Fourier 58 (2008), 22212248.CrossRefGoogle Scholar
[Pla11]Plamondon, P.-G., Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math. 227 (2011), 139.CrossRefGoogle Scholar
[Rei]Reiten, I., Cluster categories, in Proceedings of the ICM 2010, Hyderabad.Google Scholar
[Sch10]Schiffler, R., On cluster algebras arising from unpunctured surfaces II, Adv. Math. 223 (2010), 18851923.CrossRefGoogle Scholar
[SZ04]Sherman, P. and Zelevinsky, A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (2004), 947974.CrossRefGoogle Scholar
[Zel07]Zelevinsky, A., What is … a cluster algebra?  Notices Amer. Math. Soc. 54 (2007), 14941495.Google Scholar