Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T10:51:31.007Z Has data issue: false hasContentIssue false

Closure of singular foliations: the proof of Molino’s conjecture

Published online by Cambridge University Press:  13 September 2017

Marcos M. Alexandrino
Affiliation:
Universidade de São Paulo, Instituto de Matemática e Estatística, Rua do Matão 1010, 05508 090 São Paulo, Brazil email [email protected], [email protected]
Marco Radeschi
Affiliation:
University of Notre Dame, Department of Mathematics, 255 Hurley, Notre Dame, IN 46556, USA email [email protected]

Abstract

In this paper we prove the conjecture of Molino that for every singular Riemannian foliation $(M,{\mathcal{F}})$, the partition $\overline{{\mathcal{F}}}$ given by the closures of the leaves of ${\mathcal{F}}$ is again a singular Riemannian foliation.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrino, M. M., Proofs of conjectures about singular Riemannian foliations , Geom. Dedicata 119 (2006), 219234.Google Scholar
Alexandrino, M. M., Desingularization of singular Riemannian foliation , Geom. Dedicata 149 (2010), 397416.Google Scholar
Alexandrino, M. M. and Lytchak, A., On smoothness of isometries between orbit spaces , in Riemannian geometry and applications – Proc. RIGA (Ed. Univ. Bucureşti, Bucharest, 2011), 1728.Google Scholar
Alexandrino, M. M. and Radeschi, M., Smoothness of isometric flows on orbit spaces and applications to the theory of foliations , Transform. Groups 22 (2017), 127, doi:10.1007/s00031-016-9386-5.Google Scholar
Bolton, J., Transnormal systems , Q. J. Math. 24 (1973), 385395.Google Scholar
Cheeger, J. and Gromoll, D., On the structure of complete manifolds of nonnegative curvature , Ann. of Math. (2) 96 (1972), 413443.Google Scholar
Lytchak, A. and Radeschi, M., Algebraic nature of singular Riemannian foliations in spheres, J. reine angew. Math., to appear, doi:10.1515/crelle-2016-0010.Google Scholar
Mendes, R. and Radeschi, M., Smooth basic functions, Preprint (2015), arXiv:1511.06174 [math.DG].Google Scholar
Molino, P., Riemannian foliations, Progress in Mathematics, vol. 73 (Birkhäuser, Boston, MA, 1988).Google Scholar
Molino, P., Orbit-like foliations , in Geometric study of foliations, eds Mizutani, T. et al. (World Scientific, Singapore, 1994), 97119.Google Scholar
Radeschi, M., Clifford algebras and new singular Riemannian foliations in spheres , Geom. Funct. Anal. 24 (2014), 16601682.Google Scholar
Sussmann, H. J., Orbits of families of vector fields and integrability of distributions , Trans. Amer. Math. Soc. 180 (1973), 171188.Google Scholar
Toeben, D., Parallel focal structure and singular Riemannian foliations , Trans. Amer. Math. Soc. 358 (2006), 16771704.Google Scholar
Wilking, B., A duality theorem for Riemannian foliations in nonnegative sectional curvature , Geom. Funct. Anal. 17 (2007), 12971320.Google Scholar