Hostname: page-component-5cf477f64f-h6p2m Total loading time: 0 Render date: 2025-03-27T22:55:24.259Z Has data issue: false hasContentIssue false

Chai's conjecture for semiabelian Jacobians

Published online by Cambridge University Press:  24 March 2025

Otto Overkamp*
Affiliation:
Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany [email protected]

Abstract

We prove Chai's conjecture on the additivity of the base change conductor of semiabelian varieties in the case of Jacobians of proper curves. This includes the first infinite family of non-trivial wildly ramified examples. Along the way, we extend Raynaud's construction of the Néron lft-model of a Jacobian in terms of the Picard functor to arbitrary seminormal curves (beyond which Jacobians admit no Néron lft-models, as shown by our more general structural results). Finally, we investigate the structure of Jacobians of (not necessarily geometrically reduced) proper curves over fields of degree of imperfection at most one and prove two conjectures about the existence of Néron models and Néron lft-models due to Bosch–Lütkebohmert–Raynaud for Jacobians of general proper curves in the case of perfect residue fields, thus strengthening the author's previous results in this situation.

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anantharaman, S., Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Bull. Soc. Math. France, Mémoire 33 (1973), 579.Google Scholar
Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer, Berlin, Heidelberg, 1990).Google Scholar
Chai, C.-L., Néron models for semiabelian varieties: Congruence and change of base field, Asian J. Math. 4 (2000), 715736.CrossRefGoogle Scholar
Chai, C.-L. and Yu, J.-K., Congruences of Néron models for tori and the Artin conductor, Ann. of Math. 154 (2001), 347382.CrossRefGoogle Scholar
Cluckers, R., Loeser, F. and Nicaise, J., Chai's conjecture and Fubini properties of dimensional motivic integration, Algebra Number Theory 7 (2013), 893915.CrossRefGoogle Scholar
Colliot-Thélène, J.-L. and Skorobogatov, A., The Brauer-Grothendieck group, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3 Folge, A Series of Modern Surveys in Mathematics, vol. 71 (Springer, Cham, 2021).CrossRefGoogle Scholar
Conrad, B., Gabber, O. and Prasad, G., Pseudo-reductive groups, New Mathematical Monographs, vol. 26, second edition (Cambridge University Press, Cambridge, 2015).Google Scholar
Demazure, M. and Grothendieck, A. (eds.), Schémas en groupes I, II, III (SGA 3), Lecture Notes in Mathematics, vol. 151, 152, 153 (Springer, Berlin, Heidelberg, New York, 1970); revised version edited by P. Gille and P. Polo, vols. I and III, Soc. Math. de France, 2011.Google Scholar
Halle, L. H. and Nicaise, J., Néron models and base change, Lecture Notes in Mathematics, vol. 2156 (Springer, Cham, 2016).Google Scholar
Liu, Q., Algebraic geometry and arithmetic curves (translated by R. Erné), Graduate Texts in Mathematics (Oxford University Press, Oxford, 2002).CrossRefGoogle Scholar
Liu, Q., Lorenzini, D. and Raynaud, M., Néron models, Lie algebras, and reduction of curves of genus one, Invent. Math. 157 (2004), 455518.CrossRefGoogle Scholar
Liu, Q., Lorenzini, D. and Raynaud, M., Corrigendum to Néron models, Lie algebras, and reduction of curves of genus one and the Brauer group of a surface, Invent. Math. 214 (2018), 593604.Google Scholar
Overkamp, O., Jumps and motivic invariants of semiabelian Jacobians, Int. Math. Res. Not. 2019 (2019), 64376479.CrossRefGoogle Scholar
Overkamp, O., On Jacobians of geometrically reduced curves and their Néron models, Trans. Amer. Math. Soc. 377 (2024), 58635903.Google Scholar
Pépin, C., Modèles semi-factoriels et modèles de Néron, Math. Ann. 335 (2013), 147185.Google Scholar
Raynaud, M., Spécialisation du foncteur de Picard, Publ. Math. IHES 38 (1970), 2776.CrossRefGoogle Scholar
Raynaud, M., Anneaux excellents (Rédigé par Y. Laszlo), in Travaux de Gabber sur l'uniformisation locale et la cohomologie étale des schémas quasi-excellents. (Séminaire à l’École polytechnique 2006–2008), Astérisque 363–364 (Société Mathématique de France, 2014).Google Scholar
Schröer, S., Fibrations whose geometric fibres are nonreduced, Nagoya Math J. 200 (2010), 3557.CrossRefGoogle Scholar
The Stacks Project Authors, Stacks project (2018), https://stacks.math.columbia.edu.Google Scholar