Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T04:21:51.082Z Has data issue: false hasContentIssue false

Branching laws for classical groups: the non-tempered case

Published online by Cambridge University Press:  17 December 2020

Wee Teck Gan
Affiliation:
National University of Singapore, [email protected]
Benedict H. Gross
Affiliation:
Department of Mathematics, University of California San Diego, La Jolla, CA92093, [email protected]
Dipendra Prasad
Affiliation:
Indian Institute of Technology Bombay, Powai, Mumbai400076, [email protected] St Petersburg State University, St Petersburg, Russia

Abstract

This paper generalizes the Gan–Gross–Prasad (GGP) conjectures that were earlier formulated for tempered or more generally generic L-packets to Arthur packets, especially for the non-generic L-packets arising from Arthur parameters. The paper introduces the key notion of a relevant pair of Arthur parameters that governs the branching laws for ${{\rm GL}}_n$ and all classical groups over both local fields and global fields. It plays a role for all the branching problems studied in Gan et al. [Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups. Sur les conjectures de Gross et Prasad. I, Astérisque 346 (2012), 1–109] including Bessel models and Fourier–Jacobi models.

Type
Research Article
Copyright
© The Author(s) 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

WTG is partially supported by an MOE Tier 2 grant R146-000-233-112. DP thanks the Science and Engineering Research Board of the Department of Science and Technology, India for its support through the JC Bose National Fellowship of the Government of India, project number JBR/2020/000006. His work was also supported by a grant of the Government of the Russian Federation for the state support of scientific research carried out under the agreement 14.W03.31.0030 dated 15 February 2018.

References

Aizenbud, A., Gourevitch, D., Rallis, S. and Schiffmann, G., Multiplicity one theorems, Ann. of Math. 172 (2010), 14071434.CrossRefGoogle Scholar
Anandavardhanan, U. and Prasad, D., Distinguished representations for SL($n$), Math. Res. Lett. 25 (2018), 16951717.10.4310/MRL.2018.v25.n6.a1CrossRefGoogle Scholar
Arthur, J., Unipotent automorphic representations: conjectures. Orbites unipotentes et representations, II, Astérisque 171–172 (1989), 1371.Google Scholar
Arthur, J., The endoscopic classification of representations: orthogonal and symplectic groups, vol. 61 (Colloquium Publications by the American Mathematical Society, 2013).CrossRefGoogle Scholar
Atobe, H. and Gan, W. T., Local theta correspondence of tempered representations and Langlands parameters, Invent. Math. 210 (2017), 341415.CrossRefGoogle Scholar
Badulescu, I., Lapid, E. and Mínguez, A., Une condition suffisante pour l'irréductibilité d'une induite parabolique de ${{\rm GL}}(m,D)$, Ann. Inst. Fourier (Grenoble) 63 (2013), 22392266.CrossRefGoogle Scholar
Bernstein, J. and Zelevinsky, A., Induced representations of reductive $p$-adic groups, Ann. Sci. Éc. Norm. Supér. 10 (1977), 441472.CrossRefGoogle Scholar
Chan, K. Y., Homological branching law for $({{\rm GL}}_{n+1}(F),{{\rm GL}}_n(F))$: projectivity and indecomposability, Preprint (2019), arXiv:1905.01668.Google Scholar
Clozel, L., Combinatorial consequences of Arthur's Conjectures and the Burger–Sarnak method, Int. Math. Res. Not. IMRN 11 (2004), 511523.10.1155/S1073792804132649CrossRefGoogle Scholar
Flicker, Y. Z., On distinguished representations, J. Reine Angew. Math. 418 (1991), 139172.Google Scholar
Gan, W. T., Gross, B. H. and Prasad, D., Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups. Sur les conjectures de Gross et Prasad. I, Astérisque 346 (2012), 1109.Google Scholar
Gan, W. T., Gross, B. H. and Prasad, D., Restrictions of representations of classical groups: examples. Sur les conjectures de Gross et Prasad. I, Astérisque 346 (2012), 111170.Google Scholar
Gan, W.T. and Gurevich, N., Restrictions of Saito-Kurokawa representations, in Automorphic forms and L-functions I. Global aspects, Contemporary Mathematics, vol. 488 (American Mathematical Society, Providence, RI, 2009), 95124. With an appendix by Gordan Savin.Google Scholar
Gan, W. T. and Ichino, A., The Shimura–Waldspurger correspondence for ${\rm Mp}_{2n}$, Ann. of Math. (2) 188 (2018), 9651016.Google Scholar
Gelbart, S. and Rogawski, J., L-functions and Fourier–Jacobi coefficients for the unitary group ${\rm U}(3)$, Invent. Math. 105 (1991), 445472.10.1007/BF01232276CrossRefGoogle Scholar
Gelbart, S., Rogawski, J. and Soudry, D., Endoscopy, theta-liftings, and period integrals for the unitary group in three variables, Ann. of Math 145 (1997), 419476.CrossRefGoogle Scholar
Ginzburg, D., Rallis, S. and Soudry, D., On a correspondence between cuspidal representations of ${{\rm GL}}_{2n}$ and $ {{{\rm \tilde{S}p}}}_{2n}$, J. Amer. Math. Soc. 12 (1999), 849907.CrossRefGoogle Scholar
Ginzburg, D., Rallis, S. and Soudry, D., On explicit lifts of cusp forms from ${{\rm GL}}_m$ to classical groups, Ann. of Math. (2) 150 (1999), 807866.10.2307/121057CrossRefGoogle Scholar
Ginzburg, D., Rallis, S. and Soudry, D., Endoscopic representations of ${{{\rm \tilde{S}p}}}_{2n}$, J. Inst. Math. Jussieu 1 (2002), 77123.CrossRefGoogle Scholar
Ginzburg, D., Rallis, S. and Soudry, D., The descent map from automorphic representations of GL(n) to classical groups (World Scientific, Hackensack, NJ, 2011).CrossRefGoogle Scholar
Gross, B. and Prasad, D., On the decomposition of a representation of ${\rm SO}_{n}$ when restricted to $\,{\rm SO}_{n-1}$, Canad. J. Math. 44 (1992), 9741002.CrossRefGoogle Scholar
Gross, B. and Prasad, D., On irreducible representations of $\,{\rm SO}_{2n+1}\times {\rm SO}_{2m}$, Canad. J. Math. 46 (1994), 930950.CrossRefGoogle Scholar
Gurevich, M., On restriction of unitarizable representations of general linear groups and the non-generic local Gan-Gross-Prasad conjecture, J. Eur. Math. Soc. (JEMS), to appear. Preprint (2018), arXiv:1808.02640.Google Scholar
Gurevich, N. and Szpruch, D., The non-tempered $\theta _{{10}}$ Arthur parameter and Gross–Prasad conjecture, J. Number Theory 153 (2015), 372426.CrossRefGoogle Scholar
Haan, J., The local Gan–Gross–Prasad conjecture for ${\rm U}(3)\times {\rm U}(2)$: the non-generic case, J. Number Theory 165 (2016), 324354.CrossRefGoogle Scholar
Haan, J., On the Fourier–Jacobi model for some endoscopic Arthur packet of ${\rm U}(3)\times {\rm U}(3)$: the nongeneric case, Pacific J. Math. 286 (2017), 6989.CrossRefGoogle Scholar
Harder, G., Langlands, R. P. and Rapoport, M., Algebraische Zyklen auf Hilbert–Blumenthal– Flächen, J. Reine Angew. Math. 366 (1986), 53120.Google Scholar
Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich.Google Scholar
Hendrickson, A. E., The Burger–Sarnak method and operations on the unitary duals of classical groups, PhD thesis, National University of Singapore (2020), arXiv:2002.11935.Google Scholar
Ichino, A. and Ikeda, T., On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), 13781425.CrossRefGoogle Scholar
Ichino, A. and Yamana, S., Periods of automorphic forms: the case of $({{\rm GL}}_{n+1} \times {{\rm GL}}_n, {{\rm GL}}_n)$, Compos. Math. 151 (2015), 665712.CrossRefGoogle Scholar
Jacquet, H., Lapid, E. and Rogawski, J., Periods of automorphic forms, J. Amer. Math. Soc. 12 (1999), 173240.CrossRefGoogle Scholar
Jacquet, H., Piatetskii-Shapiro, I. I. and Shalika, J. A., Rankin–Selberg convolutions, Amer. J. Math. 105 (1983), 367464.CrossRefGoogle Scholar
Jiang, D. and Zhang, L., Arthur parameters and cuspidal automorphic modules of classical groups, Ann. of Math. (2) 191 (2020), 739827.CrossRefGoogle Scholar
Kable, A., Asai L-functions and Jacquet's conjecture, Amer. J. Math. 126 (2004), 789820.CrossRefGoogle Scholar
Kaletha, T., Minguez, A., Shin, S. W. and White, P.-J., Endoscopic classification of representations: inner forms of unitary groups, Preprint (2014), arXiv:1409.3731.Google Scholar
Mœglin, C., Sur certains paquets d'Arthur et involution d'Aubert–Schneider–Stuhler généralisée, Represent. Theory 10 (2006), 86129.CrossRefGoogle Scholar
Mœglin, C., Classification et changement de base pour les séries discrètes des groupes unitaires p-adiques, Pacific J. Math. 233 (2007), 159204.CrossRefGoogle Scholar
Mœglin, C., Paquets d'Arthur discrets pour un groupe classique p-adique, in Automorphic forms and L-functions II. Local aspects, Contemporary Mathematics, vol. 489 (Israel Mathematical Conference Proceedings, American Mathematical Society, Providence, RI, 2009), 179257.Google Scholar
Mœglin, C., Multiplicité 1 dans les paquets d'Arthur aux places p-adiques, in On certain L-functions, Clay Mathematics Proceedings, vol. 13 (American Mathematical Society, Providence, RI, 2011), 333374.Google Scholar
Mœglin, C. and Renard, D., Paquets d'Arthur des groupes classiques complexes, in Around Langlands correspondences, Contemporary Mathematics, vol. 691 (American Mathematical Society, Providence, RI, 2017), 203256.CrossRefGoogle Scholar
Mœglin, C. and Renard, D., Sur les paquets d'Arthur des groupes classiques et unitaires non quasi-déployés, in Relative aspects in representation theory, Langlands functoriality and automorphic forms, Lecture Notes in Mathematics, vol. 2221 (Springer, Cham, 2018), 341361.CrossRefGoogle Scholar
Mœglin, C. and Renard, D., Sur les paquets d'Arthur des groupes unitaires et quelques conséquences pour les groupes classiques, Pacific J. Math. 299 (2019), 5388.CrossRefGoogle Scholar
Mok, C. P., Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), 1108.Google Scholar
Muić, G., Howe correspondence for discrete series representations; the case of $({{\rm Sp}}(n),O(V))$, J. Reine Angew. Math. 567 (2004), 99150.Google Scholar
Muić, G., On the structure of theta lifts of discrete series for dual pairs $({{\rm Sp}}(n),O(V))$, Israel J. Math. 164 (2008), 87124.CrossRefGoogle Scholar
Muić, G., Theta lifts of tempered representations for dual pairs $({{\rm Sp}}_{2n},O(V))$, Canad. J. Math. 60 (2008), 13061335.CrossRefGoogle Scholar
Offen, O. and Sayag, E., On unitary representations of ${{\rm GL}}_{2n}$ distinguished by the symplectic group, J. Number Theory 125 (2007), 344355.CrossRefGoogle Scholar
Prasad, D., Invariant forms for representations of ${{\rm GL}}_2$ over a local field, Amer. J. Math. 114 (1992), 13171363.CrossRefGoogle Scholar
Rogawski, J., Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, vol. 123 (Princeton University Press, 1990).CrossRefGoogle Scholar
Rogawski, J., The multiplicity formula for A-packets, in The zeta functions of Picard modular surfaces, eds R. Langlands and D. Ramakrishnan (Publications CRM, Montreal, QC, 1992), 395–419.Google Scholar
Soudry, D. and Tanay, Y., On local descent for unitary groups, J. Number Theory 146 (2015), 557626.CrossRefGoogle Scholar
Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. Éc. Norm. Supér. (4) 19 (1986), 335382.CrossRefGoogle Scholar
Tate, J., Number theoretic background, in Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics, Oregon State University, Corvallis, Oregon, 1977), Part 2, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 326.Google Scholar
Venkatesh, A., The Burger–Sarnak method and operations on the unitary dual of ${{\rm GL}}(n)$, Represent. Theory 9 (2005), 268286.CrossRefGoogle Scholar
Venketasubramanian, C. G., Representations of ${{\rm GL}}_{n}$ distinguished by ${{\rm GL}}_{n-1}$ over a $p$-adic field, Israel J. Math. 194 (2013), 144.CrossRefGoogle Scholar
Vogan, D., The local Langlands conjecture, Contemporary Maths, vol. 145 (American Mathematical Society, Providence, RI, 1993), 305379.Google Scholar
Waldspurger, J.-L., La conjecture locale de Gross–Prasad pour les représentations tempérées des groupes spéciaux orthogonaux, Astérisque 347 (2012).Google Scholar
Zhu, C. B., Local theta correspondence and nilpotent invariants, in Representations of reductive groups, Proceedings of Symposia in Pure Mathematics, vol. 101 (American Mathematical Society, Providence, RI, 2019), 427450.CrossRefGoogle Scholar
Zydor, M., Periods of automorphic forms over reductive groups, Preprint (2019), arXiv:1903.01697.Google Scholar