Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T23:59:14.704Z Has data issue: false hasContentIssue false

Unipotent nearby cycles and the cohomology of shtukas

Published online by Cambridge University Press:  13 March 2023

Andrew Salmon*
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA [email protected]

Abstract

We give cases in which nearby cycles commute with pushforward from sheaves on the moduli stack of shtukas to a product of curves over a finite field. The proof systematically uses the property that taking nearby cycles of Satake sheaves on the Beilinson–Drinfeld Grassmannian with parahoric reduction is a central functor together with a ‘Zorro's lemma’ argument similar to that of Xue [Smoothness of cohomology sheaves of stacks of shtukas, Preprint (2020), arXiv:2012.12833]. As an application, for automorphic forms at the parahoric level, we characterize the image of tame inertia under the Langlands correspondence in terms of two-sided cells.

Type
Research Article
Copyright
© 2023 The Author(s). The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beilinson, A. A., How to glue perverse sheaves, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Mathematics, vol. 1289 (Springer, Berlin, 1987), 4251.Google Scholar
Bezrukavnikov, R., On tensor categories attached to cells in affine Weyl groups, in Representation theory of algebraic groups and quantum groups, Advanced Studies in Pure Mathematics, vol. 40 (Mathematical Society of Japan, Tokyo, 2004), 6990.CrossRefGoogle Scholar
Bezrukavnikov, R., On two geometric realizations of an affine Hecke algebra, Publ. Math. Inst. Hautes Études Sci. 123 (2016), 167.CrossRefGoogle Scholar
Drinfeld, V. G., Cohomology of compactified moduli varieties of F-sheaves of rank 2, in Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 162 (Avtomorfn. Funkts. i Teor. Chisel. III, 1987), 107158.Google Scholar
Drinfeld, V. G., Proof of the Petersson conjecture for GL(2) over a global field of characteristic $p$, Funktsional. Anal. i Prilozhen. 22 (1988), 3454.Google Scholar
Gaitsgory, D., Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), 253280.CrossRefGoogle Scholar
Gaitsgory, D., Appendix: braiding compatibilities, in Representation theory of algebraic groups and quantum groups, Advanced Studies in Pure Mathematics, vol. 40 (Mathematical Society of Japan, Tokyo, 2004), 91100.CrossRefGoogle Scholar
Illusie, L., Autour du théorème de monodromie locale, in Périodes p-adiques – Séminaire de Bures, 1988, Astérisque, vol. 223 (Société Mathématique de France, 1994), 957.Google Scholar
Lafforgue, L., Une compactification des champs classifiant les chtoucas de Drinfeld, J. Amer. Math. Soc. 11 (1998), 10011036.CrossRefGoogle Scholar
Lafforgue, L., Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), 1241.Google Scholar
Lafforgue, V., Introduction to chtoucas for reductive groups and to the global Langlands parameterization, Preprint (2014), arXiv:1404.6416.Google Scholar
Lafforgue, V., Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale, J. Amer. Math. Soc. 31 (2018), 719891.CrossRefGoogle Scholar
Lafforgue, V. and Zhu, X., Décomposition au-dessus des paramètres de Langlands elliptiques, Preprint (2018), arXiv:1811.07976.Google Scholar
Lusztig, G., Cells in affine Weyl groups. IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 297328.Google Scholar
Mayeux, A., Richarz, T. and Romagny, M., Néron blowups and low-degree cohomological applications, Preprint (2020), arXiv:2001.03597.Google Scholar
Rad, E. A. and Habibi, S., Local models for the moduli stacks of global $\mathfrak {G}$-shtukas, Math. Res. Lett. 26 (2019), 323364.CrossRefGoogle Scholar
Richarz, T., Affine Grassmannians and geometric Satake equivalences, Int. Math. Res. Not. IMRN 2016 (2016), 37173767.CrossRefGoogle Scholar
Varshavsky, Y., Moduli spaces of principal $F$-bundles, Selecta Math. (N.S.) 10 (2004), 131166.CrossRefGoogle Scholar
Xue, C., Cuspidal cohomology of stacks of shtukas, Compos. Math. 156 (2020), 10791151.CrossRefGoogle Scholar
Xue, C., Finiteness of cohomology groups of stacks of shtukas as modules over Hecke algebras, and applications, Épijournal Géom. Algébrique 4 (2020), No. 6.Google Scholar
Xue, C., Smoothness of cohomology sheaves of stacks of shtukas, Preprint (2020), arXiv:2012.12833.Google Scholar
Yun, Z., Motives with exceptional Galois groups and the inverse Galois problem, Invent. Math. 196 (2014), 267337.CrossRefGoogle Scholar
Yun, Z., Epipelagic representations and rigid local systems, Selecta Math. (N.S.) 22 (2016), 11951243.CrossRefGoogle Scholar
Zhu, X., On the coherence conjecture of Pappas and Rapoport, Ann. of Math. (2) 180 (2014), 185.Google Scholar
Zhu, X., The geometric Satake correspondence for ramified groups, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), 409451.Google Scholar
Zhu, X., Coherent sheaves on the stack of Langlands parameters, Preprint (2020), arXiv:2008.02998.Google Scholar