Published online by Cambridge University Press: 23 September 2019
We describe generators of disguised residual intersections in any commutative Noetherian ring. It is shown that, over Cohen–Macaulay rings, the disguised residual intersections and algebraic residual intersections are the same, for ideals with sliding depth. This coincidence provides structural results for algebraic residual intersections in a quite general setting. It is shown how the DG-algebra structure of Koszul homologies affects the determination of generators of residual intersections. It is shown that the Buchsbaum–Eisenbud family of complexes can be derived from the Koszul–Čech spectral sequence. This interpretation of Buchsbaum–Eisenbud families has a crucial rule to establish the above results.
The first author was partially supported by PhD scholarships from CAPES-Brazil and from FAPERJ-Brazil. The second author was partially supported by the grant ‘bolsa de produtividade 301407/2016-9’ from CNPq-Brazil.