Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:33:04.692Z Has data issue: false hasContentIssue false

Local–global principle for reduced norms over function fields of $p$-adic curves

Published online by Cambridge University Press:  02 November 2017

R. Parimala
Affiliation:
Department of Mathematics & Computer Science, Emory University, 400 Dowman Drive NE, Atlanta, GA 30322, USA email [email protected]
R. Preeti
Affiliation:
Department of Mathematics, Indian Institute of Technology (Bombay), Powai, Mumbai-400076, India email [email protected]
V. Suresh
Affiliation:
Department of Mathematics & Computer Science, Emory University, 400 Dowman Drive NE, Atlanta, GA 30322, USA email [email protected]

Abstract

Let $K$ be a (non-archimedean) local field and let $F$ be the function field of a curve over $K$. Let $D$ be a central simple algebra over $F$ of period $n$ and $\unicode[STIX]{x1D706}\in F^{\ast }$. We show that if $n$ is coprime to the characteristic of the residue field of $K$ and $D\cdot (\unicode[STIX]{x1D706})=0$ in $H^{3}(F,\unicode[STIX]{x1D707}_{n}^{\otimes 2})$, then $\unicode[STIX]{x1D706}$ is a reduced norm from $D$. This leads to a Hasse principle for the group $\operatorname{SL}_{1}(D)$, namely, an element $\unicode[STIX]{x1D706}\in F^{\ast }$ is a reduced norm from $D$ if and only if it is a reduced norm locally at all discrete valuations of $F$.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, A., Structure of algebras, American Mathematical Society Colloquium Publications, vol. 24 (American Mathematical Society, Providence, RI, 1961), revised printing.Google Scholar
Artin, M., Algebraic approximation of structures over complete local rings , Publ. Math. Inst. Hautes Études Sci. 36 (1969), 2358.CrossRefGoogle Scholar
Cassels, J. W. S. and Fröhlich, A., Algebraic number theory (Thomson Book Company, Washington, DC, 1967).Google Scholar
Colliot-Thélène, J.-L., Birational invariants, purity and the Gersten conjecture , in K-theory and algebraic geometry: connections with quadratic forms and division algebras, AMS Summer Research Institute, Santa Barbara 1992, Proceedings of Symposia in Pure Mathematics, vol. 58, Part I, eds Jacob, W. and Rosenberg, A. (American Mathematical Society, Providence, RI, 1995), 164.Google Scholar
Colliot-Thélène, J.-L., Parimala, R. and Suresh, V., Patching and local global principles for homogeneous spaces over function fields of p-adic curves , Comment. Math. Helv. 87 (2012), 10111033.CrossRefGoogle Scholar
Fein, B. and Schacher, M., ℚ(t) and ℚ((t))-admissibility of groups of odd order , Proc. Amer. Math. Soc. 123 (1995), 16391645.Google Scholar
Fried, M. and Jarden, M., Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 11, third edition (Springer, Berlin, 2008).Google Scholar
Gille, P. and Szamuely, T., Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101 (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
Harbater, D. and Hartmann, J., Patching over fields , Israel J. Math. 176 (2010), 61107.CrossRefGoogle Scholar
Harbater, D., Hartmann, J. and Krashen, D., Applications of patching to quadratic forms and central simple algebras , Invent. Math. 178 (2009), 231263.CrossRefGoogle Scholar
Harbater, D., Hartmann, J. and Krashen, D., Local-global principles for Galois cohomology , Comment. Math. Helv. 89 (2014), 215253.CrossRefGoogle Scholar
Harbater, D., Hartmann, J. and Krashen, D., Local-global principles for torsors over arithmetic curves , Amer. J. Math. 137 (2015), 15591612.CrossRefGoogle Scholar
Harbater, D., Hartmann, J. and Krashen, D., Refinements to patching and applications to field invariants , Int. Math. Res. Not. IMRN 2015 (2015), 1039910450.CrossRefGoogle Scholar
Hu, Y., Hasse principle for simply connected groups over function fields of surfaces , J. Ramanujan Math. Soc. 29 (2014), 155199.Google Scholar
Hu, Y., A cohomological Hasse principle over two-dimensional local rings , Int. Math. Res. Not. IMRN 2017 (2017), 43694397.Google Scholar
Jacob, B. and Wadsworth, A., Division algebras over Henselian fields , J. Algebra 128 (1990), 126179.CrossRefGoogle Scholar
Kato, K., A generalization of local class field theory by using K-groups , I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), 303376.Google Scholar
Kato, K., A Hasse principle for two-dimensional global fields , J. reine angew. Math. 366 (1986), 142181.Google Scholar
Knus, M.-A., Merkurjev, A. S., Rost, M. and Tignol, J.-P., The book of involutions (American Mathematical Society, Providence, RI, 1998).CrossRefGoogle Scholar
Lorenz, F., Algebra volume II: Fields with structure, algebras and advanced topics, University Text (Springer, New York, 2008).Google Scholar
Maurice, A. and Oscar, G., The Brauer group of a commutative ring , Trans. Amer. Math. Soc. 97 (1960), 367409.Google Scholar
Merkurjev, A. S. and Suslin, A. A., The norm residue homomorphism of degree 3 , Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 339356; Transl. Math. USSR-Izv. 36 (1991), 349–367.Google Scholar
Milne, J. S., Étale cohomology (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Parimala, R. and Suresh, V., Period-index and u-invariant questions for function fields over complete discretely valued fields , Invent. Math. 197 (2014), 215235.CrossRefGoogle Scholar
Parimala, R. and Suresh, V., On the u-invariant of function fields of curves over complete discretely valued fields , Adv. Math. 280 (2015), 729742.CrossRefGoogle Scholar
Preeti, R., Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with cd 2(k)⩽3 , J. Algebra 385 (2013), 294313.CrossRefGoogle Scholar
Reddy, B. S. and Suresh, V., Admissibility of groups over function fields of p-adic curves , Adv. Math. 237 (2013), 316330.CrossRefGoogle Scholar
Riou, J., Classes de Chern, morphismes de Gysin, pureté absolue , in Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schemas quasi-excellents. Sém. à l’École Polytechnique 2006–2008, Astérisque, vol. 363–364, eds Illusie, L., Laszlo, Y. and Orgogozo, F. (Société Mathématique de France, Paris, 2014), 301349.Google Scholar
Saltman, D. J., Division algebras over p-adic curves , J. Ramanujan Math. Soc. 12 (1997), 2547.Google Scholar
Serre, J.-P., Local fields (Springer, New York, 1979).CrossRefGoogle Scholar
Serre, J.-P., Galois cohomology (Springer, New York, 1997).CrossRefGoogle Scholar
Serre, J.-P., Cohomological invariants, Witt invariants and trace forms , in Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, eds Garibaldi, S., Merkurjev, A. and Serre, J.-P. (American Mathematical Society, Providence, RI, 2003).Google Scholar