Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T08:10:44.271Z Has data issue: false hasContentIssue false

The WASP Model: A Micro-Macro System of Wave-Schrödinger-Plasma Equations for Filamentation

Published online by Cambridge University Press:  20 August 2015

E. Lorin*
Affiliation:
School of Mathematics and Statistics, Carleton University, Ottawa, K1S 5B6, Canada
S. Chelkowski*
Affiliation:
Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
A. D. Bandrauk*
Affiliation:
Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
*
Corresponding author.Email:[email protected]
Get access

Abstract

In this paper, we model laser-gas interactions and propagation in some extreme regimes. After a mathematical study of a micro-macro Maxwell-Schrödinger model [1] for short, high-frequency and intense laser-gas interactions, we propose to improve this model by adding a plasma equation in order to precisely take into account free electron effects. We examine if such a model can predict and explain complex structures such as filaments, on a physical and numerical basis. In particular, we present in this paper a first numerical observation of nonlinear focusing effects using an ab-initio gas representation and linking our results with existing nonlinear models.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Lorin, E., Chelkowski, S. and Bandrauk, A., A Maxwell-Schrödinger model for non-perturbative laser-molecule interaction and some methods of numerical computation, In High-Dimensional Partial Differential Equations in Science and Engineering, Volume 41 of CRM Proc. Lect. Notes., pages 161182, Amer. Math. Soc., Providence, RI, 2007.Google Scholar
[2]Lorin, E., Chelkowski, S. and Bandrauk, A., A numerical Maxwell-Schrödinger model for laser-matter interaction and propagation, Comput. Phys. Comm., 177(12) (2007), 908932.Google Scholar
[3]Lorin, E., Chelkowski, S. and Bandrauk, A., Mathematical modeling of boundary conditions for laser-molecule time dependent Schrödinger equations and some aspects of their numerical computation, one-dimensional case, Num. Methods. Partial. Differ. Equations, 25(1) (2009), 110136.Google Scholar
[4]Lorin, E., Chelkowski, S. and Bandrauk, A., Propagation effects on attosecond pulse generation, Number art. No. 67332V in Proceedings of SPIE–The International Society for Optical Engineering, 2007.Google Scholar
[5]Lorin, E., Chelkowski, S. and Bandrauk, A., Attosecond pulse generation from aligned molecules-dynamics and propagation in , New. J. Phys., 10 (2008), 025033.Google Scholar
[6]Lewenstein, M., Balcou, Ph., Ivanov, M. Y., Huillier, A. and Corkum, P. B., Theory of high-harmonic generation by low frequency laser fields, Phys. Rev. A., 49(3) (1994), 21172132.CrossRefGoogle ScholarPubMed
[7]Corkum, P.-B., Plasma perspective on strong-field multiphoton ionization, Phys. Rev. Lett., 71 (1993), 19941997.Google Scholar
[8]Dumas, E., Global existence for Maxwell-Bloch systems, J. Differ. Equations., 219(2) (2005), 484509.Google Scholar
[9]Joly, J. L., Métivier, G. and Rauch, J., Global solutions to Maxwell equations in a ferromagnetic medium, Ann. Henri Poincaré., 1(2) (2010), 307340.Google Scholar
[10]Couairon, A. and Mysyrowicz, A., Organizing multiple femtosecond filaments in air, Phys. Rep., 41(3) (2007), 47189.Google Scholar
[11]Baudouin, L., Kavian, O. and Puel, J.-P., Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differ. Equations., 216(1) (2005), 188222.Google Scholar
[12]Bergé, L., Skupin, S., Nuter, R., Kasparian, J. and Wolf, J.-P., Ultrashort filaments of light in weakly ionized, optically transparent media, Rep. Pro. Phys., 70(10) (2007), 16331713.Google Scholar
[13]Bergé, L., Gouédard, C., Schjodt-Eriksen, J. and Ward, H., Filamentation patterns in kerr media vs. beam shape robustness, nonlinear saturation and polarization states, Phys. D., 176 (2003), 181211.Google Scholar
[14]Fibich, G. and Ilan, B., Vectorial and random effects in self-focusing and in multiple filamentation, Phys. D., 157(1-2) (2001), 112146.Google Scholar
[15]Brabec, T. and Krausz, F., Intense few-cycle laser fields: frontier of nonlinear optics, Rev. Mod. Phys., 72 (2000), 545591.CrossRefGoogle Scholar
[16]Yin, H.-M., Existence and regularity of a weak solution to Maxwell’s equations with a thermal effect, Math. Methods. Appl. Sci., 29(10) (2006), 11991213.Google Scholar
[17]Boyd, R. W., Nonlinear Optics, Academic Press, 2nd edition, 2003.Google Scholar
[18]Skupin, S. and Bergé, L., Self-guiding of femtosecond light pulses in condensed media: Plasma generation versus chromatic dispersion, Phys. D., 220 (2006), 1430.CrossRefGoogle Scholar
[19]Bandrauk, A. and Chelkowski, S., Dynamic imaging of nuclear wavefunctions with ultrashort UV laser pulses, Phys. Rev. Lett., 87(27) (2001), 113120.Google Scholar
[20]Chelkowski, S., Bandrauk, A. and Corkum, P.-B., Femtosecond coulomb explosion imaging of vibrational wave functions, Phys. Rev. Lett., 82(17) (1999), 34163419.Google Scholar
[21]Bandrauk, A. D., Chelkowski, S. and Nguyen, H. S., Attosecond localization of electrons in molecules, Int. J. Quant. Chem., 100(6) (2004), 834844.Google Scholar
[22]Skarka, V., Aleksić, N. B. and Berezhiani, V. I., Evolution of singular optical pulses towards vortex solitons and filamentation in air, Phys. Lett. A., 319(3-4) (2003), 317324.Google Scholar
[23]Bidégaray-Fesquet, B., Hiérarchie de modeles en optique Quantique, De Maxwell-Bloch Schrödinger Non-linéaire, Springer-Verlag, Berlin, Mathématiques et Applications, Vol. 49, edition, 2006.Google Scholar
[24]Glassey, R. T., On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18(9) (1977), 17941797.CrossRefGoogle Scholar
[25]Diels, J. C. and Rudolph, W., Ultrashort Laser Pulse Phenomena, Academic Press, 2nd edition (Optics and Photonics Series) edition, 2006.Google Scholar
[26]B., N., Berezhiani, V. I., Skarka, V. and Aleksić, , Dynamics of localized and nonlocalized optical vortex solitons in cubic-quintic nonlinear media, Phys. Lett. E., 64 (2001), 057601.Google Scholar
[27]Lorin, E. and Bandrauk, A., Efficient parallel computing for laser-gas quantum interaction and propagation, 22th High Performance Computing Symposium, IEEE, pages 4-8, 2008.Google Scholar
[28]Lagmago Kamta, G. and Bandrauk, A., Three-dimensional time-profile analysis of high-order harmonic generation in molecules: Nuclear interferences in H2+, Phys. Rev. A., 71 (2005), 053407.Google Scholar