Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T04:10:14.607Z Has data issue: false hasContentIssue false

Simulation of Maxwell's Equations on GPU Using a High-Order Error-Minimized Scheme

Published online by Cambridge University Press:  08 March 2017

Tony W. H. Sheu*
Affiliation:
Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan Center for Advanced Study in Theoretical Sciences, National Taiwan University, Taipei, Taiwan Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan
S. Z. Wang*
Affiliation:
Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
J. H. Li*
Affiliation:
Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
Matthew R. Smith*
Affiliation:
Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
*
*Corresponding author. Email addresses:[email protected] (T.W. H. Sheu), [email protected] (S. Z. Wang), [email protected] (J. H. Li), [email protected] (M. R. Smith)
*Corresponding author. Email addresses:[email protected] (T.W. H. Sheu), [email protected] (S. Z. Wang), [email protected] (J. H. Li), [email protected] (M. R. Smith)
*Corresponding author. Email addresses:[email protected] (T.W. H. Sheu), [email protected] (S. Z. Wang), [email protected] (J. H. Li), [email protected] (M. R. Smith)
*Corresponding author. Email addresses:[email protected] (T.W. H. Sheu), [email protected] (S. Z. Wang), [email protected] (J. H. Li), [email protected] (M. R. Smith)
Get access

Abstract

In this study an explicit Finite Difference Method (FDM) based scheme is developed to solve the Maxwell's equations in time domain for a lossless medium. This manuscript focuses on two unique aspects – the three dimensional time-accurate discretization of the hyperbolic system of Maxwell equations in three-point non-staggered grid stencil and it's application to parallel computing through the use of Graphics Processing Units (GPU). The proposed temporal scheme is symplectic, thus permitting conservation of all Hamiltonians in the Maxwell equation. Moreover, to enable accurate predictions over large time frames, a phase velocity preserving scheme is developed for treatment of the spatial derivative terms. As a result, the chosen time increment and grid spacing can be optimally coupled. An additional theoretical investigation into this pairing is also shown. Finally, the application of the proposed scheme to parallel computing using one Nvidia K20 Tesla GPU card is demonstrated. For the benchmarks performed, the parallel speedup when compared to a single core of an Intel i7-4820K CPU is approximately 190x.

Type
Research Article
Copyright
Copyright © Global-Science Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by Weng Cho Chew

References

[1] Cai, J. X., Wang, Y. S., Wang, B., and Jiang, B., New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell's equations, J. Math. Phys. 47, 118, 2006.CrossRefGoogle Scholar
[2] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE T. Antenn. Propag. 14, 302307, 1966.Google Scholar
[3] Panaretos, A. H. and Diaz, R. E., A simple and accurate methodology to optimize parameter-dependent finite-difference time-domain schemes, IEEE Trans. Microw. Theory. Tech. Vol. 56(5), 11251136, 2008.Google Scholar
[4] Finkelstein, B. and Kastner, R., Finite difference time domain dispersion reduction schemes, J. Comput. Phys. Vol. 221(1), 422438, 2007.Google Scholar
[5] Hawke, P., Ed., Higher-order accurate method in time domain computational electromagnetics: A review in Advances in Imaging and Electron Physics, New York. Academic, Vol. 127, 59123, 2003.Google Scholar
[6] Wang, S. and Teixeira, F. L., A three-dimensional angle-optimized finite-difference time-domain algorithm, IEEE Trans. Microw. Theory. Tech. Vol. 31(3), 811817, 2003.CrossRefGoogle Scholar
[7] Wang, S. and Teixeira, F. L., Dispersion-relation-preserving FDTD algorithms for large-scale three-dimensional problems, IEEE Trans. Antennas Propagat. Vol. 51(8), 18181828, 2003.CrossRefGoogle Scholar
[8] Shlager, K. L. and Schneider, J. B., Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms, IEEE Trans. Antennas Propagat. Vol. 31(3), 642653, 2003.Google Scholar
[9] Chi, J., Liu, F., Weber, E., Li, Y., and Crozier, S., GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI, IEEE Trans. Biomed. Eng. Vol. 58(6), 1789–96, 2011.Google Scholar
[10] Zunoubi, M. R., Payne, J., and Roach, W. P., CUDA implementation of TE-FDTD solution of Maxwell's equations in dispersive media, IEEE Antennas and Propagation Society, Vol. 9, 756759, 2010.Google Scholar
[11] Lee, K. H., Ahmed, I., Goh, R. S. M., Khoo, E. H., Li, E. P., and Hung, T. G. G., Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications, Progr. Electromagn. Res. 116, 441456, 2011.Google Scholar
[12] Zygiridis, T. T., High-order error-optimized FDTD algorithm with GPU implementation, IEEE Trans. Magnetics, Vol. 49(5), 18091813, 2013.CrossRefGoogle Scholar
[13] Micikevicius, P., 3D Finite Difference Computation on GPUs Using CUDA, ACM New York 79-84, 2009.CrossRefGoogle Scholar
[14] Zhang, B., Xue, Z.H., Ren, W., Li, W. M., and Sheng, X. Q., Accelerating FDTD algorithm using GPU computing, IEEE (ICMTCE) 410-413, 2011.Google Scholar
[15] Shams, R. and Sadeghi, P., On optimization of finite-difference time-domain (FDTD) computation on heterogenerous and GPU clusters, J. Parallel Distrib. Comput. 71, 584593, 2011.Google Scholar
[16] Bridges, T. J. and Reich, S., Multi-symplectic integration numerical scheme for Hamiltonian PDEs that conserves symplecticity, Phys. Lett. A 284, 184193, 2001.Google Scholar
[17] Cockburn, B., Li, F., and Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. Comput. Phys. 194, 588610, 2004.Google Scholar
[18] Anderson, N., Arthurs, A. M., Helicity and variational principles for Maxwell's equations, Int. J. Electron. 54, 861864, 1983.Google Scholar
[19] Marsden, J. E., Weinstein, A., The Hamiltonian structure of Maxwell-Vlasov equations, Physical D, 4, 394406, 1982.Google Scholar
[20] Sheu, T.W.H., Hung, Y.W., Tsai, M.H., and Li, J.H., On the development of a triple-preserving Maxwell's equations solver in non-staggered grids, Int. J. Numer. Methods Fluids. 63, 13281346, 2010.Google Scholar
[21] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys 114, 185200, 1994.Google Scholar
[22] Gedney, S. D., An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices, IEEE T. Antenn. Propag. 44, 16301639, 1996.CrossRefGoogle Scholar
[23] Hockney, R. W., A fast solution of Poisson's equation using Fourier analysis, J. ACM 12(1), 95113, 1965.CrossRefGoogle Scholar
[24] Stone, H. S., An efficient parallel algonithm for the solution of a tridiagonal linear system of equations, J. ACM 20(1), 2738, 1973.Google Scholar
[25] Sengupta, S., Lefohn, A. E., and Owens, J. D., A work-efficient step-efficient prefix sum algorithm, In Proceedings of the Workshop on Edge Computing using New Commodity Architectures pp. D-26-27, 2006.Google Scholar
[26] Sanz-Serna, J. M., Symplectic Runge-Kutta and related methods: recent results, Physica D 293-302, 1992.Google Scholar
[27] Jiang, L. L., Mao, J. F., and Wu, X. L., Symplectic finite-difference time-domain method for Maxwell equations, IEEE Trans. Magn. 42(8), 19911995, 2006.Google Scholar
[28] Sha, W., Huang, Z. X., Chen, M. S., and Wu, X. L., Survey on symplectic finite-difference time-domain schemes for Maxwell's equations, IEEE T. Antenn. Propag. 56, 493510, 2008.Google Scholar
[29] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 17, 328346, 1996.Google Scholar
[30] Zingy, D. W., Lomax, H., and Jurgens, H., High-accuracy finite-difference schemes for linear wave propagation, SIAM J. Sci. Comput. 17, 328346, 1996.Google Scholar
[31] Spachmann, H., Schuhmann, R., Weiland, T., High order spatial operators for the finite integration theory, ACES Journal 17(1), 1122, 2002.Google Scholar
[32] Kashiwa, T., Sendo, Y., Taguchi, K., Ohtani, T., and Kanai, Y., Phase velocity errors of the non-standard FDTD method and comparison with other high-accuracy FDTD methods, IEEE Transactions on Magnetics 39(4), 21252128, 2003.Google Scholar
[33] Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P. R., and Joannopoulos, J. D., High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett. 77, 37873790, 1996.CrossRefGoogle ScholarPubMed
[34] Liu, Victor, Miller, David A. B., Fan, Shanhui, Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect, Optics Express Vol. 20 (2012) 2838828397.Google Scholar