Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T03:14:10.607Z Has data issue: false hasContentIssue false

Peridynamic State-Based Models and the Embedded-Atom Model

Published online by Cambridge University Press:  03 June 2015

Pablo Seleson*
Affiliation:
Institute for Computational Engineering and Sciences, 201 East 24th St, Stop C0200, Austin, Texas 78712-1229, USA
Michael L. Parks*
Affiliation:
Sandia National Laboratories, Computing Research Center, P.O. Box 5800, MS 1320, Albuquerque, NM 87185-1320, USA
Max Gunzburger*
Affiliation:
Department of Scientific Computing, 400 Dirac Science Library, Florida State University, Tallahassee, FL 32306-4120, USA
*
Corresponding author.Email:[email protected]
Get access

Abstract

We investigate connections between nonlocal continuum models and molecular dynamics. A continuous upscaling of molecular dynamics models of the form of the embedded-atom model is presented, providing means for simulating molecular dynamics systems at greatly reduced cost. Results are presented for structured and structureless material models, supported by computational experiments. The nonlocal continuum models are shown to be instances of the state-based peridynamics theory. Connections relating multibody peridynamic models and upscaled nonlocal continuum models are derived.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ercolessi, F., A molecular dynamics primer, available at http://www.fisica.uniud.it/ ∼ercolessi/md/ (1997).Google Scholar
[2] Daw, M. S., Baskes, M. I., Semiempirical, quantum mechanical calculation of hydrogen em-brittlement in metals, Phys. Rev. Lett. 50(17) (1983) 1285–1288.Google Scholar
[3] Daw, M. S., Baskes, M. I., Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29(12) (1984) 6443–6453.Google Scholar
[4] Stillinger, F. H., Weber, T. A., Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31(8) (1985) 5262–5271.CrossRefGoogle ScholarPubMed
[5] Tersoff, J., New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37(12) (1988) 6991–7000.Google Scholar
[6] Arndt, M., Griebel, M., Derivation of higher order gradient continuum models from atomistic models for crystalline solids, Multiscale Model. Simul. 4 (2005) 531–562.Google Scholar
[7] Seleson, P., Parks, M. L., Gunzburger, M., Lehoucq, R. B., Peridynamics as an upscaling of molecular dynamics, Multiscale Model. Simul. 8(1) (2009) 204–227.Google Scholar
[8] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48 (2000) 175–209.Google Scholar
[9] Silling, S. A., Epton, M., Weckner, O., Xu, J., Askari, E., Peridynamic states and constitutive modeling, Elasticity, J. 88 (2007) 151–184.Google Scholar
[10] Lehoucq, R. B., Sears, M. P., Statistical mechanical foundation of the peridynamic nonlocal continuum theory: Energy and momentum conservation laws, Phys. Rev. E84 (2011) 031112.Google Scholar
[11] Curtin, W. A., Miller, R. E., Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng. 11 (2003) R33–R68.Google Scholar
[12] Liu, W. K., Karpov, E. G., Zhang, S., Park, H. S., An introduction to computational nanome-chanics and materials, Comput. Methods Appl. Mech. Engrg. 193 (2004) 1529–1578.Google Scholar
[13] Lu, G., Kaxiras, E., Overview of multiscale simulations of materials, in: Rieth, M., Schommers, W. (Eds.), Handbook of Theoretical and Computational Nanothechnology, Vol. X, American Scientific Publishers, 2005, Ch. 22, pp. 1–33.Google Scholar
[14] Scott, M. J., Zaremba, E., Quasiatoms: An approach to atoms in nonuniform electronic systems, Phys. Rev. B 22(4) (1980) 1564–1583.Google Scholar
[15] Nørskov, J. K., Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals, Phys. Rev. B 26(6) (1982) 2875–2885.Google Scholar
[16] Herman, F., Skillman, S., Atomic Structure Calculations, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1963.Google Scholar
[17] Foiles, S. M., Baskes, M. I., Daw, M. S., Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33(12) (1986) 7983–7991.CrossRefGoogle ScholarPubMed
[18] Johnson, R. A., Analytic nearest-neighbor model for fcc metals, Phys. Rev. B 37(8) (1988) 3924–3931.Google Scholar
[19] Rose, J. H., Smith, J. R., Guinea, F., Ferrante, J., Universal features of the equation of state of metals, Phys. Rev. B 29(6) (1984) 2963–2969.Google Scholar
[20] Oh, D. J., Johnson, R. A., Simple embedded atom method model for fcc and hcp metals, J. Mater. Res. 3(3) (1988) 471–478.Google Scholar
[21] Mei, J., Davenport, J. W., Fernando, G. W., Analytic embedded-atom potentials for fcc metals: Application to liquid and solid copper, Phys. Rev. B 43(6) (1991) 4653–4658.Google Scholar
[22] Koten, B. V., Luskin, M., Analysis of energy-based blended quasi-continuum approximations, J, SIAM. Numer. Anal. 49 (2011) 2182–2209.Google Scholar
[23] Plimpton, S. J., Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1–19, available at http://lammps.sandia.gov. CrossRefGoogle Scholar
[24] Parks, M. L., Lehoucq, R. B., Plimpton, S. J., Silling, S. A., Implementing peridynamics within a molecular dynamics code, Comp. Phys. Comm. 179(11) (2008) 777–783.Google Scholar
[25] Parks, M. L., Seleson, P., Plimpton, S. J., Lehoucq, R. B., Silling, S. A., Peridynamics with LAMMPS: A user guide, Tech. Rep. SAND2010-5549, Sandia National Laboratories (2010).Google Scholar
[26] Askari, E., Bobaru, F., Lehoucq, R. B., Parks, M. L., Silling, S. A., Weckner, O., Peridynamics for multiscale materials modeling, in: SciDAC 2008, 13-17 July, Washington, Vol. 125 of Phys, J.: Conf. Ser., IOP Publishing, 2008, p. 012078.Google Scholar
[27] Alali, B., Lipton, R., Multiscale dynamics of heterogeneous media in the peridynamic formulation, Elasticity, J. 106(1) (2012) 71–103.Google Scholar
[28] Kilic, B., Madenci, E., Coupling of peridynamic theory and the finite element method, J. Mech. Mater. Structure 5(5) (2010) 707–733.Google Scholar
[29] Macek, R. W., Silling, S. A., Peridynamics via finite element analysis, Finite Elem. Anal. Des. 43 (2007) 1169–1178.Google Scholar
[30] Seleson, P., Beneddine, S., Prudhomme, S., A force-based coupling scheme for peridynamics and classical elasticity, Comput. Mater. Sci. 66 (2013) 34–49.Google Scholar
[31] Lubineau, G., Azdoud, Y., Han, F., Rey, C., Askari, A., A morphing strategy to couple non-local to local continuum mechanics, J. Mech. Phys. Solids 60 (2012) 1088–1102.Google Scholar
[32] Han, F., Lubineau, G., Coupling of nonlocal and local continuum models by the Arlequin approach, Numer, Int. J. Meth. Engr. 89 (2012) 671–685.Google Scholar
[33] Silling, S. A., Askari, E., A meshfree method based on the peridynamic model of solid mechanics, Comp. Struct. 83 (2005) 1526–1535.Google Scholar
[34] Eringen, A. C., Nonlocal Continuum Field Theories, Springer, New York, 2002.Google Scholar
[35] Kröner, E., Elasticity theory of materials with long range cohesive forces, Int. Solids, J. Structures 3(5) (1967) 731–742.Google Scholar
[36] Kunin, I. A., Elastic Media with Microstructure I: One-dimensional Models, Vol. 26 of Springer Series in Solid State Sciences, Springer-Verlag, Berlin, 1982.Google Scholar
[37] Kunin, I. A., Elastic Media with Microstructure II: Three-dimensional Models, Vol. 44 of Springer Series in Solid State Sciences, Springer-Verlag, Berlin, 1983.Google Scholar
[38] Rogula, D., Introduction to nonlocal theory of material media, in: Rogula, D. (Ed.), Nonlocal Theory of Material Media, Springer-Verlag, Berlin, 1982, pp. 125–222.Google Scholar
[39] Noll, W., Die herleitung der grundgleichungen der thermomechanik der kontinua aus der statistischen mechanik, J. Ration. Mech. Anal. 4 (1955) 627–646.Google Scholar
[40] Silling, S. A., Lehoucq, R. B., Convergence of peridynamics to classical elasticity theory, Elasticity, J. 93 (2008) 13–37.Google Scholar
[41] Seleson, P., Parks, M. L., On the role of the influence function in the peridynamic theory, Multiscale, Int. J. Comput. Engr. 9(6) (2011) 689–706.Google Scholar