Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T03:04:46.315Z Has data issue: false hasContentIssue false

Optimal L2 Error Estimates for the Interior Penalty DG Method for Maxwell’s Equations in Cold Plasma

Published online by Cambridge University Press:  20 August 2015

Jichun Li*
Affiliation:
Department of Mathematical Sciences, University of Nevada, Las Vegas, Nevada 89154-4020, USA
*
*Corresponding author.Email:[email protected]
Get access

Abstract

In this paper, we consider an interior penalty discontinuous Galerkin (DG) method for the time-dependent Maxwell’s equations in cold plasma. In Huang and Li (J. Sci. Comput., 42 (2009), 321-340), for both semi and fully discrete DG schemes, we proved error estimates which are optimal in the energy norm, but sub-optimal in the L2-norm. Here by filling this gap, we show that these schemes are optimally convergent in the L2-norm on quasi-uniform tetrahedral meshes if the solution is sufficiently smooth.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Amrouche, C., Bernardi, C., Dauge, M. and Girault, V., Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823864.Google Scholar
[2]Arnold, D. N., Brezzi, F., Cockburn, B. and Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 17491779.Google Scholar
[3]Barucq, H., Bonnet-Bendhia, A.-S., Cohen, G., Diaz, J., Ezziani, A. and Joly, P. (eds.), Proceedings of Waves 2009: The 9th International Conferences on Mathematical and Numerical Aspects of Waves Propagation, June 15-19, 2009, Pau, France.Google Scholar
[4]Chen, M.-H., Cockburn, B. and Reitich, F., High-order RKDG methods for computational electromagnetics, J. Sci. Comput., 22 (2005), 205226.Google Scholar
[5]Cockburn, B., Li, F. and Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. Comput. Phys., 194 (2004), 588610.Google Scholar
[6]Cockburn, B., Karniadakis, G. E. and Shu, C.-W., The development of discontinuous Galerkin methods, in: Discontinuous Galerkin Methods: Theory, Computation and Applications (eds. by Cockburn, B., Karniadakis, G. E. and Shu, C.-W.), Springer, Berlin, 2000, 350.CrossRefGoogle Scholar
[7]Demkowicz, L., Computing with hp-Adaptive Finite Elements I: One and Two-Dimensional Elliptic and Maxwell Problems, CRC Press, Taylor and Francis, 2006.Google Scholar
[8]Fezoui, L., Lanteri, S., Lohrengel, S. and Piperno, S., Convergence and stability of a discontinuous Galerkin time-domain methods for the 3D heterogeneous Maxwell equations on unstructured meshes, Model. Math. Anal. Numer., 39(6) (2005), 11491176.Google Scholar
[9]Grote, M. J., Schneebeli, A. and Schötzau, D., Interior penalty discontinuous Galerkin method for Maxwell’s equations: energy norm error estimates, J. Comput. Appl. Math., 204 (2007), 375386.CrossRefGoogle Scholar
[10]Grote, M. J., Schneebeli, A. and Schötzau, D., Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44 (2006), 24082431.CrossRefGoogle Scholar
[11]Grote, M. J., Schneebeli, A. and Schötzau, D., Interior penalty discontinuous Galerkin method for Maxwell’s equations: optimal L 2-norm error estimates, IMA J. Numer. Anal., 28 (2008), 440468.Google Scholar
[12]Grote, M. J. and Schötzau, D., Optimal error estimates for the fully discrete interior penalty DG method for the wave equation, J. Sci. Comput., 40 (2009), 257272.Google Scholar
[13]Hesthaven, J. S. and Warburton, T., High-order nodal methods on unstructured grids I: timedomain solution of Maxwell’s equations, J. Comput. Phys., 181 (2002), 186221.CrossRefGoogle Scholar
[14]Hesthaven, J. S. and Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications, Springer, New York, 2008.Google Scholar
[15]Houston, P., Perugia, I., Schneebeli, A. and Schötzau, D., Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math., 100 (2005), 485518.Google Scholar
[16]Huang, Y. and Li, J., Interior penalty discontinuous Galerkin method for Maxwell’s equation in cold plasma, J. Sci. Comput., 41 (2009), 321340.Google Scholar
[17]Li, J., Error analysisof fully discrete mixedfinite element scheme for 3-D Maxwell’s equations in dispersive media, Comput. Methods Appl. Mech. Eng., 196 (2007), 30813094.Google Scholar
[18]Li, J. and Chen, Y., Analysis of a time-domain finite element method for 3-D Maxwell’s equations in dispersive media, Comput. Methods Appl. Mech. Eng., 195 (2006), 42204229.Google Scholar
[19]Li, J. and Chen, Y., Finite element study of time-dependent Maxwell’s equations in dispersive media, Numer. Meth. Part. D. E., 24 (2008), 12031221.CrossRefGoogle Scholar
[20]Lu, T., Zhang, P. and Cai, W., Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and PML boundary conditions, J. Comput. Phys., 200 (2004), 549580.CrossRefGoogle Scholar
[21]Monk, P., Finite Element Methods for Maxwell’s Equations, Oxford University Press, 2003.Google Scholar
[22]Montseny, E., Pernet, S., Ferriéres, X. and Cohen, G., Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s equations, J. Comput. Phys., 227 (2008), 67956820.Google Scholar