Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T12:16:28.715Z Has data issue: false hasContentIssue false

On the Connection Between the Spectral Difference Method and the Discontinuous Galerkin Method

Published online by Cambridge University Press:  20 August 2015

Georg May*
Affiliation:
Aachen Institute for Advanced Study in Computational Engineering Sciences, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany
*
*Corresponding author.Email:[email protected]
Get access

Abstract

In this short note we present a derivation of the Spectral Difference Scheme from a Discontinuous Galerkin (DG) discretization of a nonlinear conservation law. This allows interpretation of the Spectral Difference Scheme as a particular discretization under the quadrature-free nodal DG paradigm. Moreover, it enables identification of the key differences between the Spectral Difference Scheme and standard nodal DG schemes.

Type
Short Note
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Cockburn, B. and Shu, C. W., TVB Runge-Kutta local projection Discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52(186) (1988), 411435.Google Scholar
[2]Karniadakis, G. E. and Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd Edition, Oxford University Press,, 2005.Google Scholar
[3]Liu, Y., Vinokur, M. and Wang, Z. J., Discontinuous Spectral Difference method for conservation laws on unstructured grids, in: Proceedings of the 3rd International Conference on Computational Fluid Dynamics, July 12-16, 2004, Toronto, Canada,Springer, 2004.Google Scholar
[4]Liu, Y., Vinokur, M. and Wang, Z. J., Spectral Difference method for unstructured grids I: basic formulation, J. Comp. Phys., 216(2) (2006), 780801.Google Scholar
[5]Wang, Z. J.Liu, Y., May, G. and Jameson, A., Spectral Difference method for unstructured grids II: extension to the Euler equations, J. Sci. Comput., 32(1) (2007), 5471.Google Scholar
[6]Kopriva, D. A. and Kolias, J. H., A conservative staggered-grid Chebyshev multidomain method for compressible flows, J. Comp. Phys., 125 (1996), 244261.Google Scholar
[7]Atkins, H. L. and Shu, C. W., Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations, AIAA, 36(5) (1998), 775782.Google Scholar
[8]Hesthaven, J. S. and Gottlieb, D., Stable spectral methods for conservation laws on triangles with unstructured grids, Comput. Meth. Appl. Mech. Engrg., 175 (1999), 361381.CrossRefGoogle Scholar
[9]Hesthaven, J. S. and Teng, C. H., Stable spectral methods on tethrahedral elements, SIAM J. Sci. Comput., 21(6) (2000), 23522380.Google Scholar
[10]Hesthaven, J. S. and Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, No. 54 in Texts in Applied Mathematics, Springer Verlag, 2007.Google Scholar
[11]Wang, Z. J. and Gao, H., A unifying lifting collocation penalty formulation including the discontinuous galerkin, spectral volume/difference methods for conservation laws on mixed grids, J. Comput. Phys., 228(21) (2009), 81618186.Google Scholar
[12]Harten, A., High-resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49(3) (1983), 357393.Google Scholar
[13]Carpenter, M. H. and Gottlieb, D., Spectral methods on arbitrary grids, J. Comput. Phys., 129 (1996), 7486.CrossRefGoogle Scholar
[14]Blyth, M. G. and Pozrikidis, C., A Lobatto interpolation grid over the triangle, IMA J. Appl. Math., 71 (2006), 153169.CrossRefGoogle Scholar
[15]Chen, Q. and Babuška, I., Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle, Comput. Meth. Appl. Mech. Eng., 128(3-4) (1995), 405417.Google Scholar
[16]Hesthaven, J. S., From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Num. Anal., 35(2) (1998), 655676.Google Scholar
[17]Taylor, M. A., Wingate, B. A. and Vincent, R. E., An algorithm for computing Fekete points in the triangle, SIAM J. Numer. Anal., 38(5) (2000), 17071720.Google Scholar
[18]Chen, Q. and Babuška, I., The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron, Comput. Meth. Appl. Mech. Eng., 137 (1996), 8994.Google Scholar