Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T19:37:27.875Z Has data issue: false hasContentIssue false

A New Boundary Condition for Three-Dimensional Lattice Boltzmann Simulations of Capillary Filling in Rough Micro-Channels

Published online by Cambridge University Press:  20 August 2015

Alessandro De Maio*
Affiliation:
Numidia s.r.l, via Berna 31, 00144 Roma, Italy
Silvia Palpacelli*
Affiliation:
Numidia s.r.l, via Berna 31, 00144 Roma, Italy
Sauro Succi*
Affiliation:
Istituto Applicazioni Calcolo, CNR, via dei Taurini 19, 00185 Roma, Italy Freiburg Institute for Advanced Studies, School of Soft Matter Research, Albertstr. 19, 79104 Freiburg im Breisgau, Freiburg, Germany
*
Corresponding author.Email:[email protected]
Get access

Abstract

A new boundary condition, aimed at inhibiting near-wall condensation effects in lattice Boltzmann simulations of capillary flows in micro-corrugated channels, is introduced. The new boundary condition is validated against analytical solutions for smooth channels and demonstrated for the case of three-dimensional microflows over randomly corrugated walls.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Benzi, R., Succi, S., and Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. Rep., 222 (1992), 145–197; Wolf-Gladrow, D. A., Lattice-gas Cellular Automata and Lattice Boltzmann Models, Springer, Berlin, 2000.Google Scholar
[2]Succi, S., Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis, Phys. Rev. Lett., 89 (2002), 064502.Google Scholar
[3]Kusumaatmaja, H., Blow, M. L., Dupuis, A., and Yeomans, J. M., The collapse transition on superhydrophobic surfaces, Europhys. Lett., 81 (2008), 36003.Google Scholar
[4]Hyvaluoma, J., and Harting, J., Slip flow over structured surfaces with entrapped microbub-bles, Phys. Rev. Lett., 100 (2008), 246001.CrossRefGoogle Scholar
[5]Harting, J., Kunert, C., and Herrmann, H. J., Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels, Europhys. Lett., 75 (2006), 328–334.CrossRefGoogle Scholar
[6]Lim, C. Y., Shu, C., Niu, X. D., and Chew, Y. T., Application of lattice Boltzmann method to simulate microchannel flows, Phys. Fluids., 14 (2002), 2299–2308.Google Scholar
[7]Falcucci, G., Ubertini, S., and Succi, S., Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials, Soft Matter, 6 (2010), 4357–4365.CrossRefGoogle Scholar
[8]De Gennes, P. G., Wetting: statics and dynamics, Rev. Mod. Phys., 57 (1985), 827–863.Google Scholar
[9]Dussan, E. B., On the spreading of liquids on solid surfaces: static and dynamic contact lines, Ann. Rev. Fluid. Mech., 11 (1979), 371–400.CrossRefGoogle Scholar
[10]Eggers, J., Hydrodynamic theory of forced dewetting, Phys. Rev. Lett., 93 (2004), 094502.Google Scholar
[11]Shan, X., and Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E., 47 (1993), 1815–1819.CrossRefGoogle ScholarPubMed
[12]Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., and Toschi, F., Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows, Phys. Rev. Lett., 97 (2006), 204503.CrossRefGoogle ScholarPubMed
[13]Cottin-Bizonne, C., Barrat, J.-L., Bocquet, L., and Charlaix, E., Low-friction flows of liquid at nanopatterned interfaces, Nat. Mater., 2 (2003), 237–240.Google Scholar
[14]Diotallevi, F., Biferale, L., Chibbaro, S., Pontrelli, G., Succi, S., and Toschi, F., Lattice Boltzmann simulations of capillary filling: finite vapour density effects, Europhys. J., 171 (2009), 237– 243.Google Scholar
[15]Diotallevi, F., Biferale, L., Chibbaro, S., Lamura, A., Pontrelli, G., Sbragaglia, M., Succi, S., and Toschi, F., Capillary filling using lattice Boltzmann equations: the case of multi-phase flows, Europhys. J., 166 (2009), 111–116.Google Scholar
[16]Washburn, E. W., The dynamics of capillary flow, Phys. Rev., 17 (1921), 273–283.Google Scholar
[17]Lucas, R., Kooloid-Z, 23 (1998), 15.Google Scholar
[18]Ichikawa, N., Hosokawa, K., and Maeda, R., Interface motion of capillary-driven flow in rectangular microchannel, J. Colloid. Interface. Sci., 280 (2004), 155–164.Google Scholar
[19] Courtesy of Parikesit, G..Google Scholar
[20]Amati, G., Succi, S., and Piva, R., Massively parallel lattice Boltzmann simulation of turbulent channel flow, Int. J. Mod. Phys. C, 8 (1997), 869.Google Scholar