Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:25:54.797Z Has data issue: false hasContentIssue false

Modeling Ionic Polymer-Metal Composites with Space-Time Adaptive Multimesh hp-FEM

Published online by Cambridge University Press:  20 August 2015

David Pugal*
Affiliation:
Mechanical Engineering Department, University of Nevada, Reno Reno, NV 89557, USA Institute of Technology, University of Tartu, Nooruse St 1, 50411 Tartu, Estonia
Pavel Solin*
Affiliation:
Department of Mathematics and Statistics, University of Nevada, Reno Reno, NV 89557, USA Institute ofThermomechanics, Prague, Czech Republic
Kwang J. Kim*
Affiliation:
Mechanical Engineering Department, University of Nevada, Reno Reno, NV 89557, USA
Alvo Aabloo*
Affiliation:
Institute of Technology, University of Tartu, Nooruse St 1, 50411 Tartu, Estonia
*
Get access

Abstract

We are concerned with a model of ionic polymer-metal composite (IPMC) materials that consists of a coupled system of the Poisson and Nernst-Planck equations, discretized by means of the finite element method (FEM). We show that due to the transient character of the problem it is efficient to use adaptive algorithms that are capable of changing the mesh dynamically in time. We also show that due to large qualitative and quantitative differences between the two solution components, it is efficient to approximate them on different meshes using a novel adaptive multimesh hp-FEM. The study is accompanied with numerous computations and comparisons of the adaptive multimesh hp-FEM with several other adaptive FEM algorithms.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Basu, S. and Sharma, M. M., An improved space-charge model for flow through charged microporous membranes, J. Membrane Sci., 124(1) (1997), 7791.CrossRefGoogle Scholar
[2]Bazant, M. Z., Thornton, K. and Ajdari, A., Diffuse-charge dynamics in electrochemical systems, Phys. Rev. E, 70(2) (2004), 21506.Google Scholar
[3]Dubcova, L., Solin, P., Cerveny, J. and Kus, P., Space and time adaptive two-mesh hp-finite element method for transient microwave heating problems, Electromagnetics, 30(1) (2010), 2340.CrossRefGoogle Scholar
[4]Nemat-Nasser, S., Micromechanics of actuation of ionic polymer-metal composites, J. Appl. Phys., 92(5) (2002), 28992915.CrossRefGoogle Scholar
[5]Newbury, K. M. and Leo, D. J., Linear electromechanical model of ionic polymer transducers-part I: model development, J. Intel. Mat. Syst. Str., 146 (2003), 333.Google Scholar
[6]Pugal, D., Aabloo, A. and Kim, K. J., Dynamic surface resistance model of IPMC, Pro. SPIE, 7289 (2009), 72891E.Google Scholar
[7]Pugal, D., Jung, K., Aabloo, A. and Kim, K. J., Ionic polymer-metal composite mechanoelectri-cal transduction: review and perspectives, Polym. Int., 59(3) (2010), 279289.Google Scholar
[8]Pugal, D., Kim, K. J. and Aabloo, A., Modeling the transduction of IPMC in 3d configurations, Pro. SPIE, 7644 (2010), 76441T.Google Scholar
[9]Pugal, D., Kim, K. J., Punning, A., Kasemagi, H., Kruusmaa, M. and Aabloo, A., A self-oscillating ionic polymer-metal composite bending actuator, J. Appl. Phys., 103(8) (2008), 084908.Google Scholar
[10]Shahinpoor, M. and Kim, K. J., Ionic polymer-metal composites: I. Fundamentals, Smart Materials and Structures, 10(4) (2001), 819.Google Scholar
[11]Solin, P., Andrs, D., Cerveny, J. and Simko, M., PDE-independent adaptive hp-FEM based on hierarchic extension of finite element spaces, J. Comput. Appl. Math., 233(12) (2010), 3086–3094.CrossRefGoogle Scholar
[12]Solin, P., Cerveny, J., Dubcova, L. and Andrs, D., Monolithic discretization of linear thermoe-lasticity problems via adaptive multimesh hp-FEM, J. Comput. Appl. Math., 234(7) (2010), 23502357.Google Scholar
[13]Solin, P., Dubcova, L. and Dolezel, I., Adaptive hp-FEM with arbitrary-level hanging nodes for Maxwells equations, Adv. Appl. Math. Mech., 2(4) (2010), 518532.Google Scholar
[14]Solin, P., Dubcova, L. and Kruis, J., Adaptive hp-FEM with dynamical meshes for transient heat and moisture transfer problems, J. Comput. Appl. Math., 233(12) (2010), 31033112.CrossRefGoogle Scholar
[15]Solin, P., Segeth, K. and Dolezel, I., Higher-Order Finite Element Methods, Chapman & Hall/CRC Press, 2003.Google Scholar
[16]Valli, A. M. P., Carey, G. F. and Coutinho, A., Control strategies for timestep selection in simulation of coupled viscous flow and heat transfer, Commun. Numer. Methods Eng., 18(2) (2002), 131139.CrossRefGoogle Scholar
[17]Wallmersperger, T., Leo, D. J. and Kothera, C. S., Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling, J. Appl. Phys., 101(2) (2007), 024912.Google Scholar