Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T23:04:23.066Z Has data issue: false hasContentIssue false

Improved Unlike-Particle Collision Operator for delta-f Drift-Kinetic Particle Simulations

Published online by Cambridge University Press:  20 August 2015

R. A. Kolesnikov*
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87544, USA
W. X. Wang*
Affiliation:
Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543, USA
F. L. Hinton*
Affiliation:
Center for Astrophysics & Space Science, University of California, San Diego, La Jolla, CA 92093, USA
*
Corresponding author.Email:[email protected]
Get access

Abstract

Plasmas in modern tokamak experiments contain a significant fraction of impurity ion species in addition to main deuterium background. A new unlike-particle collision operator for δf particle simulation has been developed to study the nonlocal effects of impurities due to finite ion orbits on neoclassical transport in toroidal plasmas. A new algorithm for simulation of cross-collisions between different ion species includes test-particle and conserving field-particle operators. An improved field-particle operator is designed to exactly enforce conservation of number, momentum and energy.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Hinton, F. L. and Hazeltine, R. D., Rev. Mod. Phys. 48 (1976) 239.CrossRefGoogle Scholar
[2]Hirshman, S. P. and Sigmar, D. J., Nucl. Fusion 21 (1981) 1079.Google Scholar
[3]Helander, P. and Sigmar, D. J., Collisional Transport in Magnetized Plasmas, Chap. 12, Cambridge University Press, Cambridge, 2002.Google Scholar
[4]Wang, W. X., Rewoldt, G., Tang, W. M.et al., Phys. Plasmas 13 (2006) 082501.CrossRefGoogle Scholar
[5]Kolesnikov, R. A., Wang, W. X., Hinton, F. L., Rewoldt, G. and Tang, W. M., PPCF 52 (2010) 042002.Google Scholar
[6]Kolesnikov, R. A., Wang, W. X., Hinton, F. L., Rewoldt, G. and Tang, W. M., Phys. Plasmas 17 (2010) 022506.CrossRefGoogle Scholar
[7]Parker, S. E. and Lee, W. W., Phys. Fluids B 5 (1993) 77.Google Scholar
[8]Lee, W. W., Phys. Fluids 26 (1983) 556.Google Scholar
[9]Hinton, F. L. and Wong, S. K., Phys. Fluids 28 (1985) 3082.Google Scholar
[10]Wang, W. X., Nikajima, N., Okamoto, M. and Murakami, S., Plasma. Phys. Control. Fusion 41 (1999) 1091.Google Scholar
[10]Wang, W. X., Nikajima, N., Okamoto, M. and Murakami, S., Plasma. Phys. Control. Fusion 41 (1999) 1091.Google Scholar
[11]Brunner, S., Valeo, E. and Krommes, J. A., Phys. Plasmas 6 (1999) 4504.CrossRefGoogle Scholar
[12]Xu, X. Q. and Rosenbluth, M. N., Phys. Fluids B 3 (1991) 627.Google Scholar
[13]Lin, Z., Tang, M. W. and Lee, W. W., Phys. Plasmas 2 (1995) 2975.Google Scholar
[14]Dimits, A. M. and Cohen, B. I., Phys. Rev. E 49 (1994) 709.Google Scholar
[15]Sugama, H., Watanabe, T.-H. and Nunami, M., Phys. Plasmas 16 (2009) 112503.Google Scholar
[16]Satake, S., Kanno, R. and Sugama, H., Plasma and Fusion Research 3 (2008) S1062.Google Scholar