Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T03:24:45.999Z Has data issue: false hasContentIssue false

A Generalized Stationary Algorithm for Resonant Tunneling: Multi-Mode Approximation and High Dimension

Published online by Cambridge University Press:  20 August 2015

Hao Wu*
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing, 10084, China Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France
*
Corresponding author.Email:[email protected]
Get access

Abstract

The multi-mode approximation is presented to compute the interior wave function of Schrödinger equation. This idea is necessary to handle the multi-barrier and high dimensional resonant tunneling problems where multiple eigenvalues are considered. The accuracy and efficiency of this algorithm is demonstrated via several numerical examples.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ben Abdallah, N., On a multidimensional Schrädinger-Poisson scattering model for semiconductors, J. Math. Phys., 41(2000), no. 7, 42414261.Google Scholar
[2]Ben Abdallah, N., Degond, P. and Markowich, P.A., On a one-dimensional Schrädinger-Poisson scattering model, Z. angew. Math. Phys., 48(1997), 135155.Google Scholar
[3]Ben Abdallah, N., Negulescu, C., Mouis, M. and Polizzi, E., Simulation Schemes in 2D Nanoscale MOSFETs: A WKB Based Method, J. Comput. Elect., 3(2004), 397400.Google Scholar
[4]Abdallah, N.Ben and Pinaud, O., Multiscale simulation of transport in an open quantum system: Resonances and WKB interpolation, J. Comput. Phys., 213(2006), no. 1, 288310.Google Scholar
[5]Bao, W.Z., Jin, S. and Markowich, P.A., On time-splitting spectral approximations for the Schrädinger equation in the semiclassical regime, J. Comput. Phys., 175(2002), 487524.Google Scholar
[6]Bao, W.Z., Jin, S. and Markowich, P.A., Numerical studies of time-splitting spectral discretizations of nonlinear Schrädinger equations in the semiclassical regime, SIAM J. Sci. Comput., 25(2003), no. 1, 2764.Google Scholar
[7]Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1995.Google Scholar
[8]Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.Google Scholar
[9]Faraj, A. and Ben Abdallah, N., An improved transient algorithm for resonant tunneling, preprint.Google Scholar
[10]Ferry, D.K. and Goodnick, S.M., Transport in Nanostructures, Cambridge University Press, 1997.Google Scholar
[11]Gummel, H.K., Self-consistant iterative scheme for one-dimensional steady state transistor calculation, IEEE Trans. Electron Devices, 11(1964), 455465.CrossRefGoogle Scholar
[12]Jiang, H.Y., Cai, W. and Tsu, R., Accuracy of the Frensley inflow boundary condition for Wigner equations in simulating resonant tunneling diodes, J. Comput. Phys., 230(2011), 20312044.Google Scholar
[13]Jiang, H.Y., Shao, S.H., Cai, W. and Zhang, P.W., Boundary treatments in non-equilibrium Green’s function(NEGF) methods for quantum transport in nano-MOSFETs, J. Comput. Phys., 227(2008), no. 13, 65536573.Google Scholar
[14]Jin, S., Wu, H. and Yang, X., Gaussian beam methods for the Schrädinger equation in the semi-classical regime: Lagrangian and Eulerian formulations, Commun. Math. Sci., 6(2008), no. 4, 9951020.Google Scholar
[15]Jin, S., Wu, H. and Yang, X., A numerical study of the Gaussian beam method for Schrädinger-Poisson equations, J. Comput. Math., 28(2010), no. 2, 261272.Google Scholar
[16]Jona-Lasinio, G., Presilla, C. and Sjöstrand, J., On Schrädinger equations with concentrated nonlinearities, Ann. Phys., 240(1995), 121.Google Scholar
[17]Lent, C. and Kirkner, D., The quantum transmitting boundary method, J. Appl. Phys., 67(1990), 63536359.Google Scholar
[18]Markowich, P.A., Pietra, P. and Pohl, C., Numerical approximation of quadratic obaservables of Schrädinger-type equations in the semiclassical limit, Numerische Mathematik, 81(1999), no. 4, 595630.Google Scholar
[19]Markowich, P.A., Pietra, P., Pohl, C. and Stimming, H.P., A Wigner-measure analysis of the Dufort-Frankel scheme for the Schrädinger equation, SIAM J. Numer. Anal., 40(2002), no. 4, 12811310.CrossRefGoogle Scholar
[20]Markowich, P.A., Ringhofer, C. and Schmeiser, C., Semiconductor Equations, Springer Verlag Wien, 1990.Google Scholar
[21]Mizuta, H. and Tanou, T., The Physics and Applications of Resonant Tunnelling Diodes, Cambridge University Press, 1995.Google Scholar
[22]Pathria, D., Morris, J.LL., Pseudo-spectral solution of nonlinear Schrädinger equations, J. Comput. Phys., 87(1990), no.1, 108125.Google Scholar
[23]Pinaud, O., Transient simulations of a resonant tunneling diode, J. Appl. Phys., 92(2002), no. 4, 19871994.CrossRefGoogle Scholar
[24]Polizzi, E. and Ben Abdallah, N., Subband decomposition approach for the simulation of quantum electron transport in nanostructures, J. Comput. Phys., 202(2005), no. 1, 150180.Google Scholar
[25]Presilla, C. and Sjöstrand, J., Transport properties in resonant tunneling heterostructures, J. Math. Phys., 37(1996), no. 10, 48164844.Google Scholar
[26]Shao, S.H., Cai, W. and Tang, H.Z., Accurate calculation of Green’s function of the Schrädinger equation in a block layered potential, J. Comput. Phys., 219(2006), no. 2, 733748.Google Scholar
[27]Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures: Fundamentals and Applications, Academic Press, 1991.Google Scholar