Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T01:55:42.491Z Has data issue: false hasContentIssue false

Formation of NaH Molecules in the Lowest Rovibrational Level of the Ground Electronic State via Short-Range Photoassociation

Published online by Cambridge University Press:  28 November 2014

Jinglun Li
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Yin Huang
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Ting Xie
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Shuo Chai
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Shulin Cong*
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
*
*Email addresses:[email protected](J. Li), [email protected](Y. Huang), [email protected](T. Xie), [email protected](S. Chai), [email protected](S. Cong)
Get access

Abstract

The formation of NaH molecules in the lowest rovibrational level of the ground electronic state is investigated using a pump-dump photoassociation (PA) scheme. In short-range region, two colliding atoms Na and H are efficiently associated into the NaH molecule in the rovibrational |0,0〉 state of the ground electronic state via the intermediately rovibrational |10,1〉 state of the excited electronic state. The changes of populations with the electric field amplitudes, frequency detunings, dump pulse duration and delay time between two laser pulses are calculated and discussed. The PA probability reaches 0.623 with a high state-selectivity.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Fioretti, A., Comparat, D., Crubellier, A., Dulieu, O., Masnou-Seeuws, F. and Pillet, P., Formation of Cold Cs2 Molecules through Photoassociation, Phys. Rev. Lett., 80 (1998), 4402.CrossRefGoogle Scholar
[2]Nikolov, T. N., Ensher, J. R., Eyler, E. E., Wang, H., Stwalley, W. C. and Gould, P. L., Efficient Production of Ground-State Potassium Molecules at Sub-mK Temperatures by Two-Step Photoassociation, Phys. Rev. Lett., 84 (2000), 246.Google Scholar
[3]Hu, X.-J., Zhang, W., Huang, Y., Yang, J.-F. and Cong, S.-L., Formation of Ultracold Cesium Molecules in the Ground Electronic State, J. Theor. Comput. Chem., 11 (2012), 1323.CrossRefGoogle Scholar
[4]Homer, A. and Roberts, G., Chirped fields for Rb + Cs photoassociation, Phys. Rev. A, 78 (2008), 053404.CrossRefGoogle Scholar
[5]Chelkowski, S. and Bandrauk, A. D., Visualizing electron delocalization, electron-proton correlations, and the Einstein-Podolsky-Rosen paradox during the photodissociation of a diatomic molecule using two ultrashort laser pulses, Phys. Rev. A, 81 (2010), 062101.Google Scholar
[6]Lefebvre, R., Atabek, O., Šindelka, M. and Moiseyev, N., Resonance Coalescence in Molecular Photodissociation, Phys. Rev. Lett., 103 (2009), 123003.Google Scholar
[7]Liu, Y., Li, J., Yu, J. and Cong, S.-L., Field-Free Molecular Orientation in Dissipative Media by a Combination of Femtosecond and THz Laser Pulses, J. Theor. Comput. Chem., 12 (2013), 1350006.Google Scholar
[8]Yu, J., Shu, C.-C., Hu, W.-H. and Cong, S.-L., Above Threshold Ionization of Polar NaK Molecules Driven by Few-Cycle Laser Pulse, J. Theor. Comput. Chem., 9 (2010), 785.CrossRefGoogle Scholar
[9]Schinke, R., Photodissociation of N2O: Potential Energy Surfaces and Absorption Spectrum, J. Chem. Phys., 134 (2011), 064313.Google Scholar
[10]Osawa, K., Terazima, M. and Kimura, Y., Photo-dissociation Dynamics of Bis(p-dimethylaminophenyl) Disulfide in Ionic liquids Studied by Ultrafast Transient Absorption Spectroscopy, Chem. Phys. Lett., 564 (2013), 21.CrossRefGoogle Scholar
[11]Goban, A., Minemoto, S. and Sakai, H., Laser-Field-Free Molecular Orientation, Phys. Rev. Lett., 101 (2008), 013001.CrossRefGoogle ScholarPubMed
[12]Tehini, R. and Sugny, D., Field-free molecular orientation by nonresonant and quasiresonant two-color laser pulses, Phys. Rev. A, 77 (2008), 023407.CrossRefGoogle Scholar
[13]Shu, C.-C., Yuan, K.-J., Hu, W.-H. and Cong, S.-L., Field-free molecular orientation with terahertz few-cycle pulses, J. Chem. Phys., 132 (2010), 244311.CrossRefGoogle ScholarPubMed
[14]Spanner, M., Patchkovskii, S., Frumker, E. and Corkum, P., Mechanisms of Two-Color Laser-Induced Field-Free Molecular Orientation, Phys. Rev. Lett., 109 (2012), 113001.Google Scholar
[15]Lapert, M. and Sugny, D., Field-free molecular orientation by terahertz laser pulses at high temperature, Phys. Rev. A, 85 (2012), 063418.Google Scholar
[16]Zhang, W., Huang, Y., Xie, T., Wang, G.-R. and Cong, S.-L., Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field, Phys. Rev. A, 82 (2010), 063411.Google Scholar
[17]Luc-Koening, E., Kosloff, R., Masnou-Seeuws, F. and Vatasescu, M., Photoassociation of cold atoms with chirped laser pulses: Time-dependent calculations and analysis of the adiabatic transfer within a two-state model, Phys. Rev. A, 70 (2004), 033414.Google Scholar
[18]Lin, F., Zhang, W., Zhao, Z.-Y. and Cong, S.-L., Suppressing the weakly bound states in the photoassociation dynamics by using a frequency cut-off laser pulse, Chin. Phys. B, 21 (2012), 073203.Google Scholar
[19]Londoño, B. E., Mahecha, J. E., Luc-Koening, E. and Crubellier, A., Resonant coupling effects on the photoassociation of ultracold Rb and Cs atoms, Phys. Rev. A, 80 (2009), 032511.Google Scholar
[20]Bouloufa, N., Crubellier, A. and Dulieu, O., Reexamination of the pure long-range state of Cs2: Prediction of missing levels in the photoassociation spectrum, Phys. Rev. A, 75 (2007), 052501.CrossRefGoogle Scholar
[21]Huang, Y., Zhang, W., Wang, G.-R., Xie, T. and Cong, S.-L., Formation of 85Rb2 ultracold molecules via photoassociation by two-color laser fields modulating the Gaussian amplitude, Phys. Rev. A, 86 (2012), 043420.Google Scholar
[22]Weise, F., Merli, A., Eimer, F., Birkner, S., Sauer, F., Wöste, L., Lindinger, A., Salzmann, W., Mullins, T. G., Wester, R., Weidemüller, M., Ağanoğlu, R. and Koch, C. P., Characteristic oscillations in the coherent transients of ultracold rubidium molecules using red and blue detuned pulses for photoassociation, J. Phys. B, 42 (2009), 215307.CrossRefGoogle Scholar
[23]Marquetand, P. and Engel, V., Local control theory applied to molecular photoassociation, J Chem. Phys., 127 (2007), 084115.Google Scholar
[24]Marquetand, P. and Engel, V., Analysis of laser fields for photoassociation and molecular stabilization derived from local control theory, J Phys. B, 41 (2008), 074026.Google Scholar
[25]Rybak, L., Amaran, S., Levin, L., Tomza, M., Moszynski, R., Kosloff, R., Koch, C. P. and Amitay, Z., Generating Molecular Rovibrational Coherence by Two-Photon Femtosecond Photoassociation of Thermally Hot Atoms, Phys. Rev. Lett., 107 (2011), 273001.Google Scholar
[26]Rybak, L., Amitay, Z., Amaran, S., Kosloff, R., Tomza, M., Moszynski, R. and Koch, C. P., Femtosecond coherent control of thermal photoassociation of magnesium atoms, Faraday Discuss., 153 (2011), 383.Google Scholar
[27]Korolkov, M.V. and Schmidt, B., Spin-orbit induced association under ultrafast laser pulse control, Chem. Phys. Lett., 361 (2002), 432.Google Scholar
[28]de Lima, F. E.Ho, T.-S. and Rabitz, H., Laser-pulse photoassociation in a thermal gas of atoms, Phys. Rev. A, 78 (2008), 063417.Google Scholar
[29]de Lima, E. F.. Ho, T.-S. and Rabitz, H., Optimal laser control of molecular photoassociation along with vibrational stabilization, Chem. Phys. Lett., 501 (2011), 267.Google Scholar
[30]Niu, Y.-Y., Wang, S.-M. and Cong, S.-L., Vibrational state-selectivity of product HI in photoassociation reaction I + H → HI, Chem. Phys. Lett., 428 (2006), 7.Google Scholar
[31]Su, Q.-Z., Yu, J., Niu, Y.-Y. and Cong, S.-L., Rovibration for Formation of Ultracold NaH Molecules Induced by an Ultrashort Laser Pulse, Chin. Phys. Lett., 27 (2010), 093401.Google Scholar
[32]Niu, Y.-Y., Wang, R., Liu, L. and Cong, S.-L., Photoassociation Reactions H + D+ and H+ + D in Ultrashort Pulse Laser Fields, Chin. Phys. Lett., 24 (2007), 3400.Google Scholar
[33]Aikawa, K., Akamatsu, D., Hayashi, M., Oasa, K., Kobayashi, J., Naidon, P., Kishimoto, T., Ueda, M. and Inouye, S., Coherent Transfer of Photoassociated Molecules into the Rovibrational Ground State, Phys. Rev. Lett., 105 (2010), 203001.Google Scholar
[34]Sachs, E. S., Hinze, J. and Sabelli, N. H., MCSCF calculations for six states of NaH, J. Chem. Phys., 62 (1975), 3367.CrossRefGoogle Scholar
[35]Sachs, E. S., Hinze, J. and Sabelli, N. H., Transition moments, band strengths, and line strengths for NaH, J. Chem. Phys., 62 (1975), 3384.Google Scholar
[36]Chu, T.-S., Zhan, Y. and Han, K.-L., The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions, Int. Rev. Phys. Chem., 25 (2006), 201.Google Scholar
[37]Lan, P.-F., Takahashi, E. J., Liu, K.-L., Fu, Y.-X. and Midorikawa, K., Carrier envelope phase dependence of electron localization in the multicycle regime, New J. Phys., 15 (2013), 063023.Google Scholar
[38]Lan, P.-F., Takahashi, E. J. and Midorikawa, K., Efficient control of electron localization by subcycle waveform synthesis, Phys. Rew. A, 86 (2012), 013418.CrossRefGoogle Scholar
[39]Liu, K.-L., Zhang, Q.-B. and Lu, P.-X., Enhancing electron localization in molecular dissociation by two-color mid- and near-infrared laser fields, Phys. Rew. A, 86 (2012), 033410.Google Scholar