Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T19:22:58.577Z Has data issue: false hasContentIssue false

A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure

Published online by Cambridge University Press:  28 November 2014

José A. Carrillo
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
Alina Chertock
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
Yanghong Huang*
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
*
*Email addresses:[email protected](J. A. Carrillo), [email protected](A. Cherock), [email protected](Y. Huang)
Get access

Abstract

We propose a positivity preserving entropy decreasing finite volume scheme for nonlinear nonlocal equations with a gradient flow structure. These properties allow for accurate computations of stationary states and long-time asymptotics demonstrated by suitably chosen test cases in which these features of the scheme are essential. The proposed scheme is able to cope with non-smooth stationary states, different time scales including metastability, as well as concentrations and self-similar behavior induced by singular nonlocal kernels. We use the scheme to explore properties of these equations beyond their present theoretical knowledge.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Vázquez, J. L.. The Porous Medium Equation. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, Oxford, 2007. Mathematical Theory.Google Scholar
[2]Carrillo, J. A. and Toscani, G.. Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J., 49(1):113142, 2000.CrossRefGoogle Scholar
[3]Otto, F.. The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations, 26(1-2):101174, 2001.CrossRefGoogle Scholar
[4]Keller, E. F. and Segel, L. A.. Initiation of slime mold aggregation viewed as an instability. J. Theoretical Biology, 26(3):399415, 1970.CrossRefGoogle ScholarPubMed
[5]Benedetto, D., Caglioti, E., and Pulvirenti, M.. A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér., 31(5):615641, 1997.CrossRefGoogle Scholar
[6]Carrillo, J. A., McCann, R. J., and Villani, C.. Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam., 19(3):9711018,2003.CrossRefGoogle Scholar
[7]Carrillo, J. A., McCann, R. J., and Villani, C.. Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal., 179(2):217263,2006.CrossRefGoogle Scholar
[8]Villani, C.. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.Google Scholar
[9]McCann, R. J.. A convexity principle for interacting gases. Adv. Math., 128(1):153179, 1997.CrossRefGoogle Scholar
[10]Ambrosio, L., Gigli, N., and Savaré, G.. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.Google Scholar
[11]Benedetto, D., Caglioti, E., Carrillo, J. A., and Pulvirenti, M.. A non-Maxwellian steady distribution for one-dimensional granular media. J. Statist. Phys., 91(5-6):979990, 1998.CrossRefGoogle Scholar
[12]Toscani, G.. One-dimensional kinetic models of granular flows. M2AN Math. Model. Numer. Anal., 34(6):12771291, 2000.CrossRefGoogle Scholar
[13]Li, H. and Toscani, G.. Long-time asymptotics of kinetic models of granular flows. Arch. Ration. Mech. Anal., 172(3):407428, 2004.CrossRefGoogle Scholar
[14]Topaz, C. M., Bertozzi, A. L., and Lewis, M. A.. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68(7):16011623, 2006.CrossRefGoogle ScholarPubMed
[15]Bessemoulin-Chatard, M. and Filbet, F.. A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput., 34(5):B559B583, 2012.CrossRefGoogle Scholar
[16]Burger, M., Carrillo, J. A., and Wolfram, M.-T.. A mixed finite element method for nonlinear diffusion equations. Kinet. Relat. Models, 3(1):5983,2010.CrossRefGoogle Scholar
[17]Lie, K.-A. and Noelle, S.. On the artificial compression method for second-order nonoscil-latory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput., 24(4):11571174,2003.CrossRefGoogle Scholar
[18]Nessyahu, H. and Tadmor, E.. Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys., 87(2):408463,1990.CrossRefGoogle Scholar
[19]Sweby, P. K.. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal., 21(5):9951011, 1984.CrossRefGoogle Scholar
[20]van Leer, B.. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput. Phys., 32(1):101136,1979.CrossRefGoogle Scholar
[21]Gottlieb, S., Shu, C.-W., and Tadmor, E.. Strong stability-preserving high-order time discretization methods. SIAM Rev., 43:89112, 2001.CrossRefGoogle Scholar
[22]von zur Gathen, J. and Gerhard, J.. Modern Computer Algebra. Cambridge University Press, Cambridge, second edition, 2003.Google Scholar
[23]Saff, E. B. and Totik, V.. Logarithmic Potentials with External Fields, volume 316 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom.Google Scholar
[24]Carrillo, J. A., Ferreira, L. C. F., and Precioso, J. C.. A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity. Adv. Math., 231(1):306327, 2012.CrossRefGoogle Scholar
[25]Burger, M., Fetecau, R., and Huang, Y. Stationary states and asymptotic behaviour of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13(1):397424, 2014.CrossRefGoogle Scholar
[26]Burger, M., di Francesco, M., and Franek, M.. Stationary states of quadratic diffusion equations with long-range attraction. Commun. Math. Sci., 11(3):709738,2013.CrossRefGoogle Scholar
[27]Balagué, D., Carrillo, J. A., Laurent, T., and Raoul, G.. Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal., 209(3):10551088,2013.CrossRefGoogle Scholar
[28]Fellner, K. and Raoul, G.. Stability of stationary states of non-local equations with singular interaction potentials. Math. Comput. Modelling, 53(7-8):14361450,2011.Google Scholar
[29]Velázquez, J. J. L.. Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions. SIAM J. Appl. Math., 64(4):11981223,2004.CrossRefGoogle Scholar
[30]Calvez, V. and Carrillo, J. A.. Volume effects in the Keller-Segel model: Energy estimates preventing blow-up. J. Math. Pures Appl. (9), 86(2):155175,2006.CrossRefGoogle Scholar
[31]Blanchet, A., Carrillo, J. A., and Masmoudi, N.. Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ2. Comm. Pure Appl. Math., 61(10):14491481,2008.CrossRefGoogle Scholar
[32]Blanchet, A., Carlen, E. A., and Carrillo, J. A.. Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. J. Funct. Anal., 262(5):21422230,2012.CrossRefGoogle Scholar
[33]Blanchet, A., Carrillo, J. A., and Laurençot, P.. Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differential Equations, 35(2):133168,2009.CrossRefGoogle Scholar
[34]Yao, Y. and Bertozzi, A. L.. Blow-up dynamics for the aggregation equation with degenerate diffusion. Physica D: Nonlinear Phenomena, 260(0):7789,2013.CrossRefGoogle Scholar
[35]Campos, J.F. and Dolbeault, J.. Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane. Comm. Partial Differential Equations, 39(5):806841,2014.CrossRefGoogle Scholar
[36]Ströhmer, G.. Stationary states and moving planes. In Parabolic and Navier-Stokes equations. Part 2, volume 81 of Banach Center Publ., pages 501513. Polish Acad. Sci. Inst. Math., Warsaw, 2008.Google Scholar
[37]Levine, H., Rappel, W.-J., and Cohen, I.. Self-organization in systems of self-propelled particles. Phys. Rev. E, 63:017101, Dec 2000.CrossRefGoogle ScholarPubMed
[38]D'Orsogna, M. R., Chuang, Y.-L., Bertozzi, A. L., and Chayes, L. S.. Self-propelled particles with soft-core interactions: Patterns, stability, and collapse. Phys. Rev. Lett., 96(10):104302, 2006.Google ScholarPubMed
[39]Fellner, K. and Raoul, G.. Stable stationary states of non-local interaction equations. Math. Models Methods Appl. Sci., 20(12):22672291, 2010.CrossRefGoogle Scholar
[40]Fetecau, R. C., Huang, Y., and Kolokolnikov, T.. Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity, 24(10):26812716,2011.CrossRefGoogle Scholar
[41]Carrillo, J. A., D'Orsogna, M. R., and Panferov, V.. Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models, 2(2):363378,2009.CrossRefGoogle Scholar
[42]Carrillo, J. A., Martin, S., and Panferov, V.. A new interaction potential for swarming models. Physica D: Nonlinear Phenomena, 260(0):112126,2013.CrossRefGoogle Scholar