Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T09:07:54.116Z Has data issue: false hasContentIssue false

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow

Published online by Cambridge University Press:  03 June 2015

Samaneh Farokhirad*
Affiliation:
Department of Mechanical Engineering, City College of City University of New York, New York, New York 10031, USA
Taehun Lee*
Affiliation:
Department of Mechanical Engineering, City College of City University of New York, New York, New York 10031, USA
Jeffrey F. Morris*
Affiliation:
Department of Chemical Engineering and Levich Institute, City College of City University of New York, New York, New York 10031, USA
*
Corresponding author.Email:[email protected]
Get access

Abstract

Lattice Boltzmann simulations based on the Cahn-Hilliard diffuse interface approach are performed for droplet dynamics in viscous fluid under shear flow, where the degree of confinement between two parallel walls can play an important role. The effects of viscosity ratio, capillary number, Reynolds number, and confinement ratio on droplet deformation and break-up in moderately and highly confined shear flows are investigated.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Taylor, G.I., Proc. Roy. Soc. 26, 501523 (1934).Google Scholar
[2]de Bruijn, R., Ph.D. thesis, Eindhoven University of Technology (1989).Google Scholar
[3]Grace, H.P., Chem. Eng. Comm. 14, 225277 (1982).Google Scholar
[4]Megias-Alguacil, D., Feigl, K., Dressler, M., Fischer, P., and Windhab, E.J., J. Non-Newtonian Fluid Mech. 126, 153161 (2005).CrossRefGoogle Scholar
[5]Chang-Zhi, L. and Lie-Jin, G., Heat Transfer-Asian Res. 36, 286294 (2007).CrossRefGoogle Scholar
[6]Li, J., Renardy, Y.Y., Phys Fluids. 12, 269282 (2000).Google Scholar
[7]Janssen, P.J.A. and Anderson, P.D., J. Comput. Phys. 227, 88078819 (2008).Google Scholar
[8]Inamuro, T., Tomita, R., and Ogino, F., Int. J. Mod. Phys. B 17, 2126 (2003).CrossRefGoogle Scholar
[9]Wagner, A.J., Wilson, L.M., and Cates, M.E., Phys. Rev. E 68, 045301(R) (2003).Google Scholar
[10]van der Sman, R.G.M. and van der Graaf, S., Comp. Phys. Comm. 178, 492504 (2008).CrossRefGoogle Scholar
[11]Lee, T., Comput. Math. Appl. 58, 987994 (2009).CrossRefGoogle Scholar
[12]Lee, T. and Liu, L., J. Comput. Phys. 229, 80458063 (2010).Google Scholar
[13]Shan, X. and Chen, H., Phys. Rev. E 47, 18151819 (1993).CrossRefGoogle Scholar
[14]Swift, M.R., Osborn, W.R., and Yeomans, J.M., Phys. Rev. E 54, 50415052 (1996).Google Scholar
[15]Ertas, D. and Kardar, M., J. Comput. Phys. 155, 96127 (1999).Google Scholar
[16]Sheth, K.S. and Pozrikidis, C., Comput. Fluids 24, 101119 (1995).Google Scholar
[17]Peskin, C.S., J. Comp. Phys. 25, 220252 (1977).Google Scholar
[18]Janssen, P.J.A., Vananroye, A., Van PuyveldeJ, P., Moldenaers, P., and Anderson, P.D., J. Rheol. 54, 10471060 (2010).Google Scholar
[19]Stone, H.A., Annu. Rev. Fluid Mech. 26, 65102 (1994).Google Scholar
[20]Renardy, Y.Y., Phys. Fluids 13, 713 (2001).Google Scholar
[21]Mikulencak, D.R. and Morris, J.F., J. Fluid Mech. 520, 215242 (2004).Google Scholar
[22]Zurita-gotor, M., Blawzdziewicz, J., and Wajnryb, E., J. Fluid Mech. 592, 447469 (2007).CrossRefGoogle Scholar
[23]Singh, R.K. and Sarkar, K., J. Fluid Mech. 683, 149171 (2011).Google Scholar
[24]Vananroye, A., Janssen, P.J.A., Anderson, P.D., Van PuyveldeJ, P., and Moldenaers, P., Phys. Fluids 20, 013101 (2008).Google Scholar