Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T16:23:08.219Z Has data issue: false hasContentIssue false

Dirichlet-to-Neumann Mapping for the Characteristic Elliptic Equations with Symmetric Periodic Coefficients

Published online by Cambridge University Press:  03 June 2015

Jingsu Kang*
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China
Meirong Zhang*
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China
Chunxiong Zheng*
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China
*
Corresponding author.Email:[email protected]
Get access

Abstract

Based on the numerical evidences, an analytical expression of the Dirichlet-to-Neumann mapping in the form of infinite product was first conjectured for the one-dimensional characteristic Schrödinger equation with a sinusoidal potential in [Commun. Comput. Phys., 3(3): 641-658, 2008]. It was later extended for the general second-order characteristic elliptic equations with symmetric periodic coefficients in [J. Comp. Phys., 227: 6877-6894, 2008]. In this paper, we present a proof for this Dirichlet-to-Neumann mapping.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Antoine, X., Arnold, A., Besse, C., Ehrhardt, M. and Schadle, A., A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrodinger equations, Commun. Comput. Phys., 4 (2008), 729796.Google Scholar
[2]Barth, M. and Benson, O., Manipulation of dielectric particles using photonic crystal cavities, Appl. Phys. Lett., 89 (2006), 253114.Google Scholar
[3]Bastard, G., Wave mechanics applied to semiconductor heterostructures, les editions de physique, Les Ulis Cedex, France, 1988.Google Scholar
[4]Ehrhardt, M. (ed.), Wave propagation in periodic media, Progress in Computational Physics, Vol. 1, Bentham Science Publishers Ltd., 2010.Google Scholar
[5]Ehrhardt, M. and Zheng, C., Exact artificial boundary conditions for problems with periodic structures, J. Comput. Phys., 227(2008), 68776894.Google Scholar
[6]Fliss, S. and Joly, P., Exact boundary conditions for time-harmonic wave propagation in locally perturbed periodic media, Appl. Numer. Math., 59 (2009), 21552178.Google Scholar
[7]Fox, C., Oleinik, V. and Pavlov, B., A Dirichlet-to-Neumann map approach to resonance gaps and bands of periodic networks, Contemp. Math., 412 (2006), 151170.CrossRefGoogle Scholar
[8]Givoli, D., Non-reflecting boundary conditions, J. Comput. Phys., 94 (1991), 129.Google Scholar
[9]Griffiths, D. J. and Steinke, C. A, Waves in locally periodic media, Am. J. Phys., 69 (2001), 137154.Google Scholar
[10]Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves, Acta Numerica, 8 (1999), 47106.Google Scholar
[11]Han, Z., Forsberg, E. and He, S., Surface plasmon Bragg gratings formend in metal-insulator-metal waveguides, IEEE Photonics Techn. Lett., 19 (2007), 9193.Google Scholar
[12]Hoang, V., The limiting absorption principle for a periodic semi-infinite waveguide, SIAM J. Appl. Math., 71 (3) (2011), 791810.Google Scholar
[13]Hohage, T. and Soussi, S., Riesz bases and Jordan form of the translation operator in semi-infinite periodic waveguides, J. Math. Pures Appl., 100 (2013), 113135.Google Scholar
[14]Joly, P., Li, J.-R. and Fliss, S., Exact Boundary Conditions for Periodic Waveguides Containing a Local Perturbation, Commun. Comput. Phys., 1 (2006), 945973.Google Scholar
[15]Kuchment, P., The mathematics of photonic crystals, Mathematical Modeling in Optical Science, 22 (2001), 207272.Google Scholar
[16]Magnus, W. and Winkler, S., Hill’s Equation, Interscience Wiley, New York, 1979.Google Scholar
[17]Póschel, J. and Trubowitz, E., Inverse Spectral Theory, Academic Press, 1987.Google Scholar
[18]Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, Berlin, 2001.Google Scholar
[19]Sondergard, T., Bozhevolnyi, S. I. and Boltasseva, A., Theoretical analysis of ridge gratings for long-range surface plasmon polaritons, Phys. Rev. B, 73 (2006), 045320.Google Scholar
[20]Smith, D. R., Pendry, J. B. and Wiltshire, M. C. K., Metamaterials and negative refractive index, Science, 305 (2004), 788792.Google Scholar
[21]Tausch, J. and Butler, J., Floquet multipliers of periodic waveguides via Dirichlet-to-Neumann maps, J. Comput. Phys., 159 (2000), 90102.Google Scholar
[22]Tausch, J. and Butler, J., Efficient analysis of periodic dielectric waveguides using Dirichlet- to-Neumann maps, J. Opt. Soc. Amer. A, 19 (2002), 11201128.Google Scholar
[23]Tsynkov, S. V., Numerical solution of problems on unbounded domains, Appl. Numer. Math., 27 (1998), 465532.Google Scholar
[24]Wacker, A., Semiconductor superlattices: A model system for nonlinear transport, Phys. Rep., 357 (2002), 1111.Google Scholar
[25]Yuan, L. and Lu, Y. Y., Dirichlet-to-Neumann map method for second harmonic generation in piecewise uniform waveguides, J. Opt. Soc. of Am. B, 24 (2007), 22872293.Google Scholar
[26]Yuan, L. and Lu, Y. Y., A recursive doubling Dirichlet-to-Neumann map method for periodic waveguides, J. Lightwave Technology, 25 (2007), 36493656.Google Scholar
[27]Zhang, M., The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials, J. London Math. Soc.-Second Ser., 64 (2001), 125143.Google Scholar
[28]Zheng, C., An exact absorbing boundary conditions for the Schrodinger equation with sinusoidal potentials at infinity, Commun. Comput. Phys., 3 (2008), 641658.Google Scholar