Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T01:13:45.161Z Has data issue: false hasContentIssue false

Direct Numerical Simulation of an Open-Cell Metallic Foam through Lattice Boltzmann Method

Published online by Cambridge University Press:  14 September 2015

Daniele Chiappini*
Affiliation:
University Niccoló Cusano - Department of Mechanical Engineering, Via don Carlo Gnocchi 3, 00166 Rome (RM), Italy
Gino Bella
Affiliation:
University of Rome Tor Vergata - Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (RM), Italy
Alessio Festuccia
Affiliation:
University of Rome Tor Vergata - Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (RM), Italy
Alessandro Simoncini
Affiliation:
University of Rome Tor Vergata - Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (RM), Italy
*
*Corresponding author. Email addresses: [email protected] (D. Chiappini), [email protected] (G. Bella), [email protected] (A. Festuccia), [email protected] (A. Simoncini)
Get access

Abstract

In this paper Lattice Boltzmann Method (LBM) has been used in order to perform Direct Numerical Simulation (DNS) for porous media analysis. Among the different configurations of porous media, open cell metallic foams are gaining a key role for a large number of applications, like heat exchangers for high performance cars or aeronautic components as well. Their structure allows improving heat transfer process with fruitful advantages for packaging issues and size reduction. In order to better understand metallic foam capabilities, a random sphere generation code has been implemented and fluid-dynamic simulations have been carried out by means of a kinetic approach. After having defined a computational domain the Reynolds number influence has been studied with the aim of characterizing both pressure drop and friction factor throughout a finite foam volume. In order to validate the proposed model, a comparison analysis with experimental data has been carried out too.

Type
Research Article
Copyright
Copyright © Global-Science Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Haack, D. P., Butcher, K. R., Kim, T., Hoduston, H., Lu, T. J., Novel Lightweight Metal Foam Heat Exchangers, Proceedings V.3 (PID-4B: Heat Exchangers Applications for Change of Phase Media and Fuel Cells Systems, Book No. I00548) (2001) 17.Google Scholar
[2]Mahjoob, S., Vafai, K., A synthesis of fluid and thermal transport models for metal foam heat exchangers, International Journal of Heat and Mass Transfer 51 (2008) 37013711. doi:10.1016/j.ijheatmasstransfer.2007.12.012.Google Scholar
[3]Bhattacharya, A., Mahajan, R. L., Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection, Journal of Electronic Packaging 124 (3) (2002) 155163. doi:10.1115/1.1464877.Google Scholar
[4]Boomsma, K., Poulikakos, D., Zwick, F., Metal foams as compact high performance heat exchangers, Mechanics of Materials 35 (2003) 11611176. doi:10.1016/j.mechmat.2003.02.001.Google Scholar
[5]Perrot, C., Panneton, R., Olny, X., Periodic unit cell reconstruction of porous media: Application to open-cell aluminum foams, Journal of Applied Physics 101(11) (2007) 113538–11. doi:10.1063/1.2745095.CrossRefGoogle Scholar
[6]Sullivan, R. M., Ghosn, L. J., Lerch, B. A., A general tetrakaidecahedron model for open-celled foams, International Journal of Solids and Structures 45 (2008) 17541765. doi:10.1016/j.ijsolstr.2007.10.028.Google Scholar
[7]Bai, M., Chung, J. N., Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams, International Journal of Thermal Sciences 50 (2011) 869880. doi:10.1016/j.ijthermalsci.2011.01.007.Google Scholar
[8]Jaeger, P. De, T’Joen, C., Huisseune, H., Ameel, B., Paepe, M. De, An experimentally validated and parameterized periodic unit-cell reconstruction of open-cell foams, Journal of Applied Physics 109 (10) (2011) 103519–10. doi:10.1063/1.3587159.Google Scholar
[9]Al-Raoush, R., Alsaleh, M., Simulation of random packing of polydisperse particles, Powder Technology 176 (1) (2007) 4755. doi:10.1016/j.powtec.2007.02.007.CrossRefGoogle Scholar
[10]Beugre, D., Calvo, S., Dethier, G., Crine, M., Toye, D., Marchot, P., Lattice Boltzmann 3D flow simulations on a metallic foam, Journal of Computational and Applied Mathematics 234 (7) (2010) 21282134. doi:10.1016/j.cam.2009.08.100.CrossRefGoogle Scholar
[11]Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Carendon Press - Oxford, 2001.CrossRefGoogle Scholar
[12]Benzi, R., Succi, S., Vergassola, M., The lattice Boltzmann equation: theory and applications, Physics Reports 222 (1992) 145197. doi:10.1016/0370-1573(92)90090-M.Google Scholar
[13]Aidun, C. K., Clausen, J. R., Lattice-Boltzmann Method for Complex Flows, Annual Review of Fluid Mechanics 42 (2010) 439472. doi:10.1146/annurev-fluid-121108–145519.CrossRefGoogle Scholar
[14]Falcucci, G., Ubertini, S., Biscarini, C., Francesco, S. Di, Chiappini, D., Palpacelli, S., Maio, A. De, Succi, S., Lattice Boltzmann Methods for Multiphase Flow Simulations across Scales, Communications in Computational Physics 1 (2010) 135. doi:10.4208/cicp.221209.250510a.Google Scholar
[15]Falcucci, G., Ubertini, S., Chiappini, D., Succi, S., Modern lattice Boltzmann methods for multiphase microflows, IMA Journal of Applied Mathematics 76 (5) (2011) 712725. doi:10.1093/imamat/hxr014.CrossRefGoogle Scholar
[16]Ergun, S., Orning, A. A., Fluid Flow through Randomly Packed Columns and Fluidized Beds, Industrial & Engineering Chemistry 41 (48) (1949) 11791184. doi:10.1021/ie50474a011.Google Scholar
[17]Chen, S., Doolen, G. D., Lattice Boltzmann Method for Fluid Flows, Annual Review of Fluid Mechanics 30 (1998) 329364. doi:10.1146/annurev.fluid.30.1.329.Google Scholar
[18]Xu, K., He, X., Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations, Journal of Computational Physics 190 (190) (2003) 100117. doi:10.1016/S0021-9991(03)00255–9.CrossRefGoogle Scholar
[19]Guo, Z., Zhao, T. S., Lattice Boltzmann model for incompressible flows through porous media, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 66. doi:10.1103/PhysRevE.66.036304.Google Scholar
[20]Dullien, F. A. L., Porous Media: Fluid Transport and Fluid Structures, Academic Press Limited, 1992.Google Scholar
[21]Comiti, J., Sabiri, N. E., Montillet, A., Experimental characterization of flow regimes in various porous media - III: Limit of Darcy’s or creeping flow regime for Newtonian and purely viscous non-Newtonian fluids, Chemical Engineering Science 55 (2000) 30573061. doi:10.1016/S0009-2509(99)00556–4.Google Scholar
[22]Al-Raoush, R., Extraction of physically-realistic pore network properties from three-dimensional synchrotron microtomography images of unconsolidated porous media, Ph.D. thesis (2002).Google Scholar