Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T05:46:19.622Z Has data issue: false hasContentIssue false

An Accurate Cartesian Method for Incompressible Flows with Moving Boundaries

Published online by Cambridge University Press:  03 June 2015

M. Bergmann*
Affiliation:
Inria, F-33400 Talence, France, Univ. Bordeaux, 1MB, UMR 5251, F-33400 Talence, France, CNRS, 1MB, UMR 5251, F-33400 Talence, France
J. Hovnanian*
Affiliation:
Inria, F-33400 Talence, France, Univ. Bordeaux, 1MB, UMR 5251, F-33400 Talence, France, CNRS, 1MB, UMR 5251, F-33400 Talence, France
A. Iollo*
Affiliation:
Inria, F-33400 Talence, France, Univ. Bordeaux, 1MB, UMR 5251, F-33400 Talence, France, CNRS, 1MB, UMR 5251, F-33400 Talence, France
*
Corresponding author.Email:[email protected]
Get access

Abstract

An accurate cartesian method is devised to simulate incompressible viscous flows past an arbitrary moving body. The Navier-Stokes equations are spatially discretized onto a fixed Cartesian mesh. The body is taken into account via the ghost-cell method and the so-called penalty method, resulting in second-order accuracy in velocity. The accuracy and the efficiency of the solver are tested through two-dimensional reference simulations. To show the versatility of this scheme we simulate a three-dimensional self propelled jellyfish prototype.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Angot, P., Bruneau, C. H. and Fabrie, P., A penalization method to take into account obstacles in incompressible flows, Numer. Math., 81(4) (1999), 497520.Google Scholar
[2]Bergmann, M., Optimisation Aérodynamique par Réduction de Modele POD et Contrle Optimal, Application au Sillage Laminaire D’un Cylindre Circulaire, PhD thesis, Institut National Polytechnique de Lorraine, 2004.Google Scholar
[3]Bergmann, M. and Iollo, A., Modeling and simulation of fish-like swimming, J. Comput. Phys., 230 (2011), 329348.Google Scholar
[4]Braza, M., Chassaing, P. and Minh, H. H., Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J. Fluid. Mech., 165 (1986).Google Scholar
[5]Chorin, A., Numerical solution of the Navier Stokes equations, Math. Comput., 22 (1968), 746762.Google Scholar
[6]Coquerelle, M. and Cottet, G. H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227(21) (2008), 91219137.Google Scholar
[7]Dabiri, J., Colin, S., Costello, J. and Gharib, M., Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses, J. Experimental Bio., 208 (2005), 1257–1265.Google Scholar
[8]Dehkordi, D., Moghaddam, H. and Jafari, H., Numerical simualtion of flow over two circular cylinders in tandem arrangement, J. Hydrodyn., 23 (2011), 114126.Google Scholar
[9]Ding, H., Shu, C. and Yeo, K., Numerical simulation of flows around two circular cylonders by mesh-free least square-based finite difference methods, Int. J. Numer. Meth. Fluids, 53 (2007), 305332.Google Scholar
[10]Duarte, F., Gormaz, R. and Natesan, S., Arbitrary lagrangian-eulerian method for navier stokes equations with moving boundaries, Comput. Methods Appl. Math. Eng., 193 (2004), 48194836.Google Scholar
[11]Ghias, R., Mittal, R. and Dong, H., A sharp interface immersed boundary method for compressible viscous flows, J. Comput. Phys., 225 (2007), 528553.Google Scholar
[12]Gibou, F., Fedkiw, R., Cheng, L. and Kang, M., A second order accurate symmetric discretization of the poisson equation on irregular domains, J. Comput. Phys., 176 (2002), 205227.CrossRefGoogle Scholar
[13]Henderson, R., Details of the drag curve near the onset of vortex shedding, Phys. Fluids, 7 (1995), 21022104.Google Scholar
[14]Jin, G. and Braza, M., A nonreflecting outlet boundary condition for incompressible unsteady Navier-Stokes calculations, J. Comput Phys., 107(2) (1993), 239253.Google Scholar
[15]Koumoutsakos, P. and Leonard, A., High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296 (1995), 138.Google Scholar
[16]Lee, J., Kim, J., Choi, H. and Yang, K. S., Sources of spurious force oscillations from an immersed boundary method for moving-body problems, J. Comput. Phys., 230(7) (2011), 2677–2695.Google Scholar
[17]Li, Z. and Lai, M., The immersed interface method for the navier stokes equations with singular forces, J. Comput. Phys., 171 (2001), 822842.Google Scholar
[18]Liao, C. C., Chang, Y. W., Lin, C. A. and McDonough, J. M., Simulating flows with moving rigid boundary using immersed-boundary method, Comput. Fluids, 39(1) (2010), 152167.Google Scholar
[19]Liu, H., Krishnan, S., Marella, S. and Udaykumar, H., Sharp interface castesian grid method ii: a technique fir simulationg droplet interactions with surfaces of arbitrary shape, J. Comput. Phys., 210 (2005), 3254.Google Scholar
[20]Mahir, N. and Altac, Z., Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements, Int. J. Heat Fluid Flow, 29 (2008), 13091318.CrossRefGoogle Scholar
[21]Marella, S., Krishnan, S., Liu, H. and Udaykumar, H., Sharp interface cartesian grid method i: an easily implemented technique for 3d moving boundary computations, J. Comput. Phys., 210 (2005), 131.Google Scholar
[22]Meneghini, J. and Satara, F., Numerical simulation of flow interference between two cylinders in tandem and side-by-side arrangements, J. Fluids Struct., 15 (2001), 327350.Google Scholar
[23]Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A. and Loebbecke, A. von, A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227 (2008), 48254852.Google Scholar
[24]Mittal, R. and Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid. Mech., (2005), 127.Google Scholar
[25]Mittal, S., Kumar, V. and Raghuvanshi, A., Unsteady incompressible flows past two cylinders in tandem and staggered arrangements, Int. J. Numer. Meth. Fluids, 25 (1997), 13151344.Google Scholar
[26]Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces, Springer, 2003.Google Scholar
[27]Osher, S. and Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations, J. Comput. Phys., 79(12) (1988).Google Scholar
[28]Ploumhans, P. G. W., Vortex methods for high-resolution simulations of viscous flow past bluff bodies in general geometry, J. Comput. Phys., 165 (2000), 354406.Google Scholar
[29]Peskin, C., Flow patterns around the heart valves, J. Comput. Phys., 10 (1972), 252271.Google Scholar
[30]Seo, J. H. and Mittal, R., A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations, J. Comput. Phys., 230(19) (2011), 73477363.Google Scholar
[31]Sethian, J., A fast marching level set method for monotonically advancing fronts, Appl. Math., 93 (1996), 15911595.Google Scholar
[32]Sethian, J. A., Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, UK, 1999.Google Scholar
[33]Sethian, J. A., Evolution, implementation, and application of level set and fast marching methods for advancing fronts, J. Comput. Phys., 169 (2001), 503555.Google Scholar
[34]Sharman, B., Lien, F. and Davidson, L., Numerical predictions of low reynolds number flows over two tandem circular cylinders, Int. J. Numer. Meth. Fluids, 47(5) (2005), 423447.CrossRefGoogle Scholar
[35]Slaouti, A. and Stansby, P., Flow around two circular cylinders by random-vortex method, J. Fluids Struct., 6(6) (1992), 641670.CrossRefGoogle Scholar
[36]Sussman, M., Smereka, P. and Osher, S., A level set approach for computing solutions to incompressible 2-phade flow, J. Comput. Phys., 114 (1994), 146159.Google Scholar
[37]Temam, R., Sur l’approximation de la solution deséquations denavier-stokes par la méthode des pas fractionnaires, Arch. Rational Mech. Anal., 32 (1969), 135153.Google Scholar
[38]Tryggvason, G., Bunner, B., Esmaeeli, A. and Al-Rawahi, N., Computational of multiphase flows, Adv. Appl. Mech., 39 (2003), 91120.Google Scholar
[39]Wieselsberger, C., New data on the laws of fluid resistance, NACA TN, 84 (1922).Google Scholar
[40]Yang, Y. and Udaykumar, H., Sharp interface castesian grid method iii: solidification of pure materials and binary solutions, J. Comput. Phys., 210 (2005), 5574.Google Scholar