Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T12:53:35.108Z Has data issue: false hasContentIssue false

Towards Translational Invariance of Total Energy with Finite Element Methods for Kohn-Sham Equation

Published online by Cambridge University Press:  15 January 2016

Gang Bao
Affiliation:
Department of Mathematics, Zhejiang University, Hang Zhou, Zhejiang Province, China
Guanghui Hu*
Affiliation:
Department of Mathematics, University of Macau, Macao S.A.R., China UM Zhuhai Research Institute, Zhuhai, Guangdong Province, China
Di Liu
Affiliation:
Department of Mathematics, Michigan State University, Michigan, USA
*
*Corresponding author. Email addresses:[email protected] (G. Bao), [email protected] (G. H. Hu), [email protected] (D. Liu)
Get access

Abstract

Numerical oscillation of the total energy can be observed when the Kohn- Sham equation is solved by real-space methods to simulate the translational move of an electronic system. Effectively remove or reduce the unphysical oscillation is crucial not only for the optimization of the geometry of the electronic structure, but also for the study of molecular dynamics. In this paper, we study such unphysical oscillation based on the numerical framework in [G. Bao, G. H. Hu, and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, Journal of Computational Physics, Volume 231, Issue 14, Pages 4967–4979, 2012], and deliver some numerical methods to constrain such unphysical effect for both pseudopotential and all-electron calculations, including a stabilized cubature strategy for Hamiltonian operator, and an a posteriori error estimator of the finite element methods for Kohn-Sham equation. The numerical results demonstrate the effectiveness of our method on restraining unphysical oscillation of the total energies.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anglada, E. and Soler, J. M.. Filtering a distribution simultaneously in real and fourier space. Phys. Rev. B 73:115122, Mar 2006.CrossRefGoogle Scholar
[2]Bao, G., Hu, G. H., and Liu, D.. An h-adaptive finite element solver for the calculations of the electronic structures. Journal of Computational Physics, 231(14):49674979, 2012.Google Scholar
[3]Bao, G., Hu, G. H., and Liu, D.. Numerical solution of the Kohn-Sham equation by finite element methods with an adaptive mesh redistribution technique. Journal of Scientific Computing, 55(2):372391, 2013.Google Scholar
[4]Bao, G., Hu, G. H., and Liu, D.. Real-time adaptive finite element solution of time-dependent Kohn-Sham equation. Journal of Computational Physics, 281(0):743758, 2015.Google Scholar
[5]Bao, G., Hu, G. H., Liu, D., and Luo, S.T.. Multi-physical modeling and multi-scale computation of nano-optical responses. Recent Advances in Scientific Computing and Applications, Contemporary Mathematics, 586:4355, 2013.Google Scholar
[6]Boguslavskiy, A. E., Mikosch, J., Gijsbertsen, A., Spanner, M., Patchkovskii, S., Gador, N., Vrakking, M. J. J., and Stolow, A.. The multielectron ionization dynamics underlying attosecond strong-field spectroscopies. Science, 335(6074):13361340, 2012.Google Scholar
[7]Castro, A., Appel, H., Oliveira, M., Rozzi, C. A., Andrade, X., Lorenzen, F., Marques, M. A. L., Gross, E. K. U., and Rubio, A.. octopus: a tool for the application of time-dependent density functional theory. physica status solidi (b), 243(11):24652488, 2006.CrossRefGoogle Scholar
[8]Fattebert, J.-L. and Nardelli, M. B.. Finite difference methods for ab initio electronic structure and quantum transport calculations of nanostructures. In Le Bris, C., editor, Special Volume, Computational Chemistry, volume 10 of Handbook of Numerical Analysis, pages 571612. Else-vier, 2003.CrossRefGoogle Scholar
[9]Feynman, R.. Forces in molecules. Phys. Rev., 56:340343, Aug 1939.Google Scholar
[10]Gale, J. D.. SIESTA: A Linear-Scaling Method for Density Functional Calculations, pages 4575. John Wiley & Sons, Inc., 2011.Google Scholar
[11]Hohenberg, P. and Kohn, W.. Inhomogeneous electron gas. Phys. Rev., 136:B864B871, Nov 1964.Google Scholar
[12]King-Smith, R. D., Payne, M. C., and Lin, J. S.. Real-space implementation of nonlocal pseudopotentials for first-principles total-energy calculations. Phys. Rev. B, 44:1306313066, Dec 1991.Google Scholar
[13]Knyazev, A. V., Argentati, M. E., Lashuk, I., and Ovtchinnikov, E. E.. Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSC. SIAM Journal on Scientific Computing, 2007:22242239, 2007.Google Scholar
[14]Kohn, W. and Sham, L.J.. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133A1138, Nov 1965.Google Scholar
[15]Kotochigova, S., Levine, Z. H., Shirley, E. L., Stiles, M. D., and Clark, C. W.. Local-density-functional calculations of the energy of atoms. Phys. Rev. A, 55:191199, Jan 1997.Google Scholar
[16]Kresse, G. and Furthmüller, J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54:1116911186, Oct 1996.Google Scholar
[17]Li, R.. On multi-mesh h-adaptive methods. Journal of Scientific Computing, 24(3):321341, 2005.Google Scholar
[18]Lin, L., Lu, J., Ying, L., and W. E., Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation. Journal of Computational Physics, 231(4):21402154, 2012.Google Scholar
[19]Marques, M., Fiolhais, C., and Marques, M., editors. A Primer in Density Functional Theory. Springer, 1 edition, 2003.Google Scholar
[20]Marques, M. A. L., Oliveira, M. J. T., and Burnus, T.. Libxc: A library of exchange and correlation functional for density functional theory. Computer Physics Communications, 183(10):22722281, 2012.Google Scholar
[21]Oliveira, M. J. T. and Nogueira, F.. Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine. Computer Physics Communications, 178(7):524534, 2008.CrossRefGoogle Scholar
[22]Ono, T., Heide, M., Atodiresei, N., Baumeister, P., Tsukamoto, S., and Blügel, S.. Real-space electronic structure calculations with full-potential all-electron precision for transition metals. Phys. Rev. B, 82:205115, Nov 2010.Google Scholar
[23]Pask, J. E. and Sterne, P. A.. Finite element methods in ab initio electronic structure calculations. Modelling and Simulation in Materials Science and Engineering, 13(3):R71, 2005.CrossRefGoogle Scholar
[24]Perdew, J. P. and Zunger, A.. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23:50485079, May 1981.Google Scholar
[25]Pulay, P.. Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. Molecular Physics, 17(2):197204, 1969.Google Scholar
[26]Rapp, J. and Bauer, D.. Effects of inner electrons on atomic strong-field-ionization dynamics. Physical Review A, 89:033401, Mar 2014.Google Scholar
[27]Schauer, V. and Linder, C.. All-electron Kohn-Sham density functional theory on hierarchic finite element spaces. Journal of Computational Physics, 250(0):644664, 2013.CrossRefGoogle Scholar
[28]Suryanarayana, P., Gavini, V., Blesgen, T., Bhattacharya, K., and Ortiz, M.. Non-periodic finite-element formulation of Kohn-Sham density functional theory. Journal of the Mechanics and Physics of Solids, 58(2):256280, 2010.Google Scholar
[29]Tsuchida, E. and Tsukada, M.. Electronic-structure calculations based on the finite-element method. Phys. Rev. B, 52:55735578, Aug 1995.Google Scholar
[30]Verfürth, R.. A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. OUP Oxford, 2013.Google Scholar
[31]Yang, C., Gao, W., and Meza, J.. On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 30(4):17731788, 2009.CrossRefGoogle Scholar
[32]Yang, C., Meza, J. C., Lee, B., and Wang, L.-W.. Kssolvła MATLAB toolbox for solving the Kohn-Sham equations. ACM Transactions on Mathematical Software (TOMS), 36(2):10, 2009.CrossRefGoogle Scholar
[33]Zhang, L.-H.. On a self-consistent-field-like iteration for maximizing the sum of the rayleigh quotients. Journal of Computational and Applied Mathematics, 257(0):1428, 2014.Google Scholar