Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T03:34:12.544Z Has data issue: false hasContentIssue false

Towards a Unified Macroscopic Description of Exciton Diffusion in Organic Semiconductors

Published online by Cambridge University Press:  31 August 2016

Jingrun Chen*
Affiliation:
Mathematical Center for Interdisciplinary Research and School of Mathematical Sciences, Soochow University, Suzhou, China; Mathematics Department, University of California, Santa Barbara, CA93106, USA
Jason D. A. Lin*
Affiliation:
Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
Thuc-Quyen Nguyen*
Affiliation:
Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
*
*Corresponding author. Email addresses:[email protected] (J. Chen), [email protected] (J. Lin), [email protected] (T.-Q. Nguyen)
*Corresponding author. Email addresses:[email protected] (J. Chen), [email protected] (J. Lin), [email protected] (T.-Q. Nguyen)
*Corresponding author. Email addresses:[email protected] (J. Chen), [email protected] (J. Lin), [email protected] (T.-Q. Nguyen)
Get access

Abstract

We study the exciton diffusion in organic semiconductors from a macroscopic viewpoint. In a unified way, we conduct the equivalence analysis between Monte-Carlo method and diffusion equation model for photoluminescence quenching and photocurrent spectrum measurements, in both the presence and the absence of Förster energy transfer effect. Connections of these two models to Stern-Volmer method and exciton-exciton annihilation method are also specified for the photoluminescence quenching measurement.

Type
Research Article
Copyright
Copyright © Global-Science Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Antoniadis, H., Rothberg, L. J., Papadimitrakopoulos, F., Yan, M., Galvin, M. E., and Abkowitz, M. A., Enhanced carrier photogeneration by defects in conjugated polymers and its mechanism, Phys. Rev. B 50 (1994), 1491114915.CrossRefGoogle ScholarPubMed
[2] Dirksen, J.A. and Ring, T.A., Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology, Chem. Eng. Sci. 46 (1991), 23892427.CrossRefGoogle Scholar
[3] Forrest, S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature 428 (2004), 911918.CrossRefGoogle ScholarPubMed
[4] Förster, T., 10th Spiers Memorial Lecture. transfer mechanisms of electronic excitation, Discuss. Faraday Soc. 27 (1959), 717.CrossRefGoogle Scholar
[5] Guide, M., Lin, J. D. A., Proctor, C. M., Chen, J., Garcia-Cervera, C., and Nguyen, T.-Q., Effect of copper metalation of tetrabenzoporphyrin donor material on organic solar cell performance, J. Mater. Chem. A 2 (2014), 78907896.CrossRefGoogle Scholar
[6] Karlin, S. and Taylor, H. M., A Second Course in Stochastic Processes, Academic Press, New York, 1981.Google Scholar
[7] Kimber, R. G. E., Wright, E. N., O’Kane, S. E. J., Walker, A. B., and Blakesley, J. C., Mesoscopic kinetic monte carlo modeling of organic photovoltaic device characteristics, Phys. Rev. B 86 (2012), 235206.CrossRefGoogle Scholar
[8] T. Kirchartz, and J. Nelson, , Device modelling of organic bulk heterojunction solar cells, Multiscale Modelling of Organic and Hybrid Photovoltaics (Beljonne, D. and Cornil, J., eds.), Top. Curr. Chem., vol. 352, 2014, pp. 279324.CrossRefGoogle Scholar
[9] Kloeden, P. E. and Platen, E., Numerical solution of stochastic differential equations, Springer, New York, 1992.CrossRefGoogle Scholar
[10] Lewis, A. J., Ruseckas, A., Gaudin, O. P. M., Webster, G. R., Burn, P. L., and Samuel, I. D. W., Singlet exciton diffusion in MEH-PPV films studied by exciton-exciton annihilation, Org. Electron. 7 (2006), 452456.CrossRefGoogle Scholar
[11] Lin, J. D. A., Mikhnenko, O. V., Chen, J., Masri, Z., Ruseckas, A., Mikhailovsky, A., Raab, R. P., Liu, J., Blom, P. W. M., Loi, M. A., Garcia-Cervera, C. J., Samuel, I. D. W., and Nguyen, T.-Q., Systematic study of exciton diffusion length in organic semiconductors by six experimental methods, Mater. Horiz. 1 (2014), 280285.CrossRefGoogle Scholar
[12] Menke, S.M., Luhman, W. A., and Holmes, R. J., Tailored exciton diffusion in organic photovoltaic cells for enhanced power conversion efficiency, Nat. Mater. 12 (2012), 152157.CrossRefGoogle ScholarPubMed
[13] Mikhnenko, O. V., Azimi, H., Scharber, M., Morana, M., Blom, P. W. M., and Loi, M. A., Exciton diffusion length in narrow bandgap polymers, Energy Environ. Sci. 5 (2012), 69606965.CrossRefGoogle Scholar
[14] Mikhnenko, O. V., Cordella, F., Sieval, A. B., Hummelen, J. C., Blom, P.W.M., and Loi, M. A., Exciton quenching close to polymer-vacuum interface of spin-coated films of poly(p-phenylenevinylene) derivative, J. Phys. Chem. B 113 (2009), 91049109.CrossRefGoogle ScholarPubMed
[15] Myers, J. D. and Xue, J., Organic semiconductors and their applications in photovoltaic devices, Polym. Rev. 52 (2012), 137.CrossRefGoogle Scholar
[16] Øksendal, B., Stochastic Differential Equations: An Introduction with Applications (Universitext), 6th ed., Springer, 2010.Google Scholar
[17] Pettersson, L. A. A., Roman, L. S., and Inganäs, O., Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, J. Appl. Phys. 86 (1999), 487496.CrossRefGoogle Scholar
[18] Peumans, P., Yakimov, A., and Forrest, S. R., Small molecular weight organic thin-film photodetectors and solar cells, J. Appl. Phys. 93 (2003), 36933723.CrossRefGoogle Scholar
[19] Pope, M. and Swenberg, C. E., Electronic processes in organic crystals and polymers, 2nd ed., Oxford University Press, 1999.CrossRefGoogle Scholar
[20] Rodríguez-Ruiz, I., Llobera, A., Vila-Planas, J., Johnson, D. W., Gómez-Morales, J., and García-Ruiz, J. M., Analysis of the structural integrity of SU-8-based optofluidic systems for small-molecule crystallization studies, Anal. Chem. 85 (2013), 96789685.CrossRefGoogle ScholarPubMed
[21] Scully, S. R. and McGehee, M. D., Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors, J. Appl. Phys. 100 (2006), 034907.CrossRefGoogle Scholar
[22] Shaw, P. E., Ruseckas, A., and Samuel, I. D. W., Exciton diffusion measurements in Poly(3-hexylthiophene), Adv. Mater. 20 (2008), 35163520.CrossRefGoogle Scholar
[23] Su, Y.-W., Lan, S.-C., and Wei, K.-H., Organic photovoltaics, Mater. Today 15 (2012), 554562.CrossRefGoogle Scholar
[24] Suna, A., Kinematics of exciton-exciton annihilation in molecular crystals, Phys. Rev. B 1 (1970), 17161739.CrossRefGoogle Scholar
[25] Terao, Y., Sasabe, H., and Adachi, C., Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells, Appl. Phys. Lett. 90 (2007), 103515.CrossRefGoogle Scholar