Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T03:22:54.820Z Has data issue: false hasContentIssue false

Simulation of 3D Porous Media Flows with Application to Polymer Electrolyte Fuel Cells

Published online by Cambridge University Press:  03 June 2015

N. I. Prasianakis*
Affiliation:
Combustion Research Laboratory, Paul Scherrer Institute, Villigen PSI5232, Switzerland
T. Rosén*
Affiliation:
Combustion Research Laboratory, Paul Scherrer Institute, Villigen PSI5232, Switzerland Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
J. Kang*
Affiliation:
Combustion Research Laboratory, Paul Scherrer Institute, Villigen PSI5232, Switzerland
J. Eller*
Affiliation:
Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
J. Mantzaras*
Affiliation:
Combustion Research Laboratory, Paul Scherrer Institute, Villigen PSI5232, Switzerland
F. N. Büichi*
Affiliation:
Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
Get access

Abstract

A 3D lattice Boltzmann (LB) model with twenty-seven discrete velocities is presented and used for the simulation of three-dimensional porous media flows. Its accuracy in combination with the half-way bounce back boundary condition is assessed. Characteristic properties of the gas diffusion layers that are used in polymer electrolyte fuel cells can be determined with this model. Simulation in samples that have been obtained via X-ray tomographic microscopy, allows to estimate the values of permeability and relative effective diffusivity. Furthermore, the computational LB results are compared with the results of other numerical tools, as well as with experimental values.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Flückiger, R., Freunberger, S. A., Kramer, D., Wokaun, A., Scherer, G. G. and Buchi, F. N., Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC, Electrochim. Acta, 54,551 (2008).Google Scholar
[2]Becker, J., Fluckiger, R., Reum, M., Biichi, F., Marone, F. and Stampanoni, M., Determination of material properties of gas diffusion layers: Experiments and simulations using phase contrast tomographic microscopy, J. Electrochem. Soc., 156, B1175B1181 (2009).Google Scholar
[3]Eller, J., Rosen, T., Marone, F., Stampanoni, M., Wokaun, A. and Biichi, F. N., Progress in in situ X-Ray tomographic microscopy of liquid water in gas diffusion layers of PEFC, J. Elec-trochem. Soc., 158, B963 (2011).Google Scholar
[4]Ostadi, H., Rama, P., Liu, Y., Chen, R., Zhang, X. X. and Jiang, K., Influence of threshold variation on determining the properties of a polymer electrolyte fuel cell gas diffusion layer in X-ray nano-tomography, Chem. Eng. Sci., 65, 2213 (2010).Google Scholar
[5]Rama, P., Liu, Y., Chen, R., Ostadi, H., Jiang, K., Zhang, X., Fisher, R. and Jeschke, M., An X-ray tomography based lattice Boltzmann simulation study on gas diffusion layers of polymer electrolyte fuel cells, J. Fuel Cell Sci. and Tech., 7, 031015 (2010).CrossRefGoogle Scholar
[6]Niu, X. D., Munekata, T., Hyodo, S. A. and Suga, K., An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model, J. Power Sources, 172,542 (2007).Google Scholar
[7]Munekata, T., Inamuro, T. and Hyodo, S. A., Gas transport properties in gas diffusion layers: A lattice Boltzmann study, Commun. Comput. Phys., 9,1335 (2011).Google Scholar
[8]Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, Oxford, 2001.Google Scholar
[9]Qian, Y. H., D’Humieres, D. and Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17,479 (1992).Google Scholar
[10]Benzi, R., Succi, S. and Vergassola, M., The lattice Boltzmann equation: Theory and applications, Phys. Rep., 222, 3 (1992).Google Scholar
[11]Higuera, F., Succi, S. and Benzi, R., Lattice gas dynamics with enhanced collisions, Europhys. Lett., 9, 345 (1989).CrossRefGoogle Scholar
[12]Karlin, I. and Asinari, P., Factorization symmetry in the lattice Boltzmann method, Physica A, 389,15301548 (2010).Google Scholar
[13]Chikatamarla, S. S. and Karlin, I. V., Lattices for the lattice Boltzmann method, Phys. Rev. E, 79, 046701 (2009).Google Scholar
[14]Shan, X., Yuan, X.-F. and Chen, H., Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation, J. Fluid Mech., 550, 413 (2006).Google Scholar
[15]Philippi, P. C., Hegele, L. A., dos Santos, L. O. E. and Surmas, R., From the continuous to the lattice Boltzmann equation: The discretization problem and thermal models, Phys. Rev. E, 73, 056702 (2006).Google Scholar
[16]Ansumali, S., Karlin, I. V. and H., C. (Ottinger, Minimal entropic kinetic models for hydrodynamics, Europhys. Lett., 63, 798 (2003).CrossRefGoogle Scholar
[17]Prasianakis, N., Ph.D. Thesis, Swiss Federal Institut of Technology (ETH), Zurich, 2008.Google Scholar
[18]Prasianakis, N. I., Karlin, I. V., Mantzaras, J. and Boulouchos, K. B., Lattice Boltzmann method with restored Galilean invariance, Phys. Rev. E, 79, 066702 (2009).Google Scholar
[19]He, X., Zou, Q., Luo, L.-S. and Dembo, M., Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys., 87,115 (1997).Google Scholar
[20]Ansumali, S. and Karlin, I. V., Kinetic boundary condition for the lattice Boltzmann method, Phys. Rev. E, 66,026311 (2002).Google Scholar
[21]Pan, C., Luo, L.-S. and Miller, C. T., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computers and Fluids, 35, 898 (2006).CrossRefGoogle Scholar
[22]Karlin, I. V., Ferrante, A. and Ottinger, H. C., Perfect entropy functions of the lattice Boltzmann method, Europhys. Lett., 47,182 (1999).Google Scholar
[23]Ansumali, S. and Karlin, I. V., Consistent lattice Boltzmann method, Phys. Rev. Lett., 95, 260605 (2005).Google Scholar
[24]Prasianakis, N. I. and Karlin, I. V., Lattice Boltzmann method for thermal flow simulation on standard lattices, Phys. Rev. E, 76,016702 (2007).Google Scholar
[25]Prasianakis, N. I. and Karlin, I. V., Lattice Boltzmann method for simulation of compressible flows on standard lattices, Phys. Rev. E, 78, 016704 (2008).Google Scholar
[26]He, X., Chen, S. and Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146, 282 (1998).Google Scholar
[27]Ansumali, S., Karlin, I. V., Arcidiacono, S., Abbas, A. and Prasianakis, N. I., Hydrodynamics beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy, Phys. Rev. Lett., 98,124502 (2007).Google Scholar
[28]Malaspinas, O., Chopard, B. and Latt, J., General regularized boundary condition for multi-speed lattice Boltzmann models, Computers & Fluids, 49, 2935 (2011).Google Scholar
[29]Sbragaglia, M. and Succi, S., Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions, Phys. Fluids, 17,093602 (2005).CrossRefGoogle Scholar
[30]Gommes, C. J., Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions, AIChE J., 47, 2000, (2009).CrossRefGoogle Scholar
[31]Filippova, O. and Hanel, D., Grid refinement for lattice-BGK models, J. Comp. Phys., 147, 219 (1998).Google Scholar
[32]Filippova, O., Succi, S., Mazzocco, F., Arrighetti, C., Bella, G. and Hanel, D., Multiscale lattice Boltzmann schemes with turbulence modeling, J. Comp. Phys., 147, 219 (1998).Google Scholar
[33]Wiegmann, A., Computation of the permeability of porous materials from their microstructure by FFF-stokes, Fraunhofer ITWM, Tech. Rep., 129, (2007).Google Scholar
[34]Wiegmann, A. and Zemitis, A., Ej-heat: A fast explicit jump harmonic averaging solver for the effective heat conductivity of composite materials, Fraunhofer ITWM, Tech. Rep., 94, (2006).Google Scholar