Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T03:35:25.358Z Has data issue: false hasContentIssue false

Numerical Study of Singularity Formation in Relativistic Euler Flows

Published online by Cambridge University Press:  03 June 2015

Pierre A. Gremaud*
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
Yi Sun*
Affiliation:
Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA
*
Corresponding author.Email:[email protected]
Get access

Abstract

The formation of singularities in relativistic flows is not well understood. Smooth solutions to the relativistic Euler equations are known to have a finite lifespan; the possible breakdown mechanisms are shock formation, violation of the subluminal conditions and mass concentration. We propose a new hybrid Glimm/central-upwind scheme for relativistic flows. The scheme is used to numerically investigate, for a family of problems, which of the above mechanisms is involved.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anile, A. M., Relativistic Fluids and Magnetofluids, Cambridge University Press, London, 1989.Google Scholar
[2]Anninos, P. and Fragile, P., Nonoscillatory central difference and artificial viscosity schemes for relativistic hydrodynamics, Astrophys. J. Suppl. Ser., 144 (2003), 243257.Google Scholar
[3]Bona, C., Palenzuela-Luque, C., and Bona-Casas, C., Elements of Numerical Relativity and Relativistic Hydrodynamics: From Einstein’s Equations to Astrophysical Simulations, 2nd ed., Lect. Notes in Phys. 783), Springer, Berlin, 2009.Google Scholar
[4]Cannizzo, J. K., Gehrels, N. and Vishniac, E. T., Glimm’s method for relativistic hydrodynamics, Astrophys. J., 680 (2008), 885896.Google Scholar
[5]Chorin, A. J., Random choice solution of hyperbolic systems, J. Comput. Phys., 22 (1976), 517533.Google Scholar
[6]Colella, P., Glimm’s method for gas dynamics, SIAM J. Sci. Stat. Comput., 3 (1982), 76110.Google Scholar
[7]Colella, P. and Woodward, P., The piecewise-parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54 (1984), 174201.Google Scholar
[8]Del Zanna, L. and Bucciantini, N., An efficient shock-capturing central-type scheme for multi-dimensional relativistic flows. I. Hydrodynamics, Astron. Astrophys., 390 (2002), 11771186.Google Scholar
[9]Dolezal, A. and Wong, S. S. M., Relativistic hydrodynamics and essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 120 (1995), 266277.Google Scholar
[10]Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25 (1988), 294318.Google Scholar
[11]Eulderink, F. and Mellema, G., General relativistic hydrodynamics with a Roe solver, Astron. Astrophys. Suppl., 110 (1995), 587623.Google Scholar
[12]Font, J. A., Numerical hydrodynamics and magnetohydrodynamics in general relativity, Living Rev. Relativity, 11 (2008), http://relativity.livingreviews.org/Articles/lrr-2008-7Google Scholar
[13]Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18 (1965), 697715.Google Scholar
[14]Godunov, S. K., A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47 (1959), 271290.Google Scholar
[15]Harten, A., Lax, P. D., and van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25 (1983), 3561.Google Scholar
[16]He, P., Tang, H. Z., An adaptive moving mesh method for two-dimensional relativistic hy-drodynamics, Commun. Comput. Phys., 11 (2012), 114146.Google Scholar
[17]Hu, J. and Jin, S., On the quasi-random choice method for Liouville equation of geometrical optics with discontinuous wave speed, J. Comput. Math, 31 (2013), 573591.Google Scholar
[18]Kurganov, A., Noelle, S., and Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2001), 707740.Google Scholar
[19]Kurganov, A. and Tadmor, E., New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), 241282.Google Scholar
[20]Kurganov, A. and Tadmor, E., Solution of two-dimensional Riemann problems for gas-dynamics without Riemann problem solvers, Numer. Methods Partial Differential Equations, 18 (2002), 584608.Google Scholar
[21]Lax, P., Development of singularity of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611613.Google Scholar
[22]LeFloch, P.G. and Yamazaki, M., Entropy solutions of the Euler equations for isothermal relativistic fluids, Int. J. Dynamical Systems and Differential Equations, 1 (2007), 2037.Google Scholar
[23]LeVeque, R.J., Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002.Google Scholar
[24]Lucas-Serrano, A., Font, J. A., Ibanez, J. M., and Marti, J. M., Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamic equations, Astron. Astrophys., 428 (2004), 703715.Google Scholar
[25]Marti, J. M. and Müller, E., The analytical solution of the Riemann problem in relativistic hydrodynamics, J. Fluid Mech., 258 (1994), 317333.Google Scholar
[26]Marti, J. M. and Müller, E., Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics, J. Comput. Phys., 123 (1996), 114.Google Scholar
[27]Marti, J. M. and Müller, E., Numerical hydrodynamics in special relativity, Living Rev. Rela-tivity, 6 (2003), http://relativity.livingreviews.org/Articles/lrr-2003-7Google Scholar
[28]Miniati, F., Glimm-Godunov’s method for cosmic-ray-hydrodynamics, J. Comput. Phys., 227 (2007), 776796.Google Scholar
[29]Pan, R. and Smoller, J.A., Blowup of smooth solutions for relativistic Euler equations, Commun. Math. Phys., 262 (2006), 729755.Google Scholar
[30]Roe, P. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), 357372.CrossRefGoogle Scholar
[31]Schneider, V., Katscher, V., Rischke, D. H., Waldhauser, B., Marhun, J. A., and Munz, C.-D., New algorithms for ultra-relativistic numerical hydrodynamics, J. Comput. Phys., 105 (1993), 92107.Google Scholar
[32]Smoller, J., Shock Waves and Reaction-Diffusion Equations, 2nd ed., Grundlehren Math. Wiss. 258, Springer-Verlag, New York, 1994.Google Scholar
[33]Smoller, J. and Temple, B., Global solutions of the relativistic Euler equations, Commun. Math. Phys., 156 (1993), 6Z-99.Google Scholar
[34]Sod, G., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 22 (19Z8), 131.Google Scholar
[35]Taub, A. H., Relativistic fluid mechanics, Annu. Rev. Fluid Mech., 10 (1978), 301332.Google Scholar
[36]Thompson, K., The special relativistic shock tube. J. Fluid Mech., 171 (1986), 365375.Google Scholar
[37]Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 1999.Google Scholar
[38]Wald, R. M., ed. Black holes and Relativistic Stars, University of Chicago Press, Chicago, 1998.Google Scholar
[39]Wen, L., Panaitescu, A., and Laguna, P., A shock-patching code for ultrarelativistic fluid flows, Astrophys. J., 486 (1997), 919929.Google Scholar
[40]Wilson, J. R. and Mathews, G. J., Relativistic numerical hydrodynamics, Cambridge University Press, Cambridge, 2003.Google Scholar
[41]Yang, J. Y., Chen, M. H., Tsai, I. N., and Chang, J. W., A kinetic beam scheme for relativistic gas dynamics, J. Comput. Phys., 136 (1997), 1940.Google Scholar
[42]Yang, Z. C., He, P., Tang, H. Z., A direct Eulerian GRP scheme for relativistic hydrodynamics: one-dimensional case, J. Comput. Phys., 230 (2011), 79647987.Google Scholar
[43]Yang, Z. C. and Tang, H. Z., A direct Eulerian GRP scheme for relativistic hydrodynamics: two-dimensional case, J. Comput. Phys., 231 (2012), 21162139.Google Scholar
[44]Zhang, W. Q. and MacFadyen, A. I., RAM: a relativistic adaptive mesh refinement hydrodynamics code, Astrophys. J. Suppl., 164 (2006), 255279.Google Scholar
[45]Zhao, J. and Tang, H. Z., RungeKutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics, J. Comput. Phys., 242 (2013), 138168.Google Scholar
[46]Zahran, Y.H., RCM-TVD hybrid scheme for hyperbolic conservation laws, Int. J. Numer. Meth. Fluids, 57 (2007), 745760.Google Scholar