Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T18:16:14.088Z Has data issue: false hasContentIssue false

A Nominally Second-Order Cell-Centered Finite Volume Scheme for Simulating Three-Dimensional Anisotropic Diffusion Equations on Unstructured Grids

Published online by Cambridge University Press:  03 June 2015

Pascal Jacq*
Affiliation:
CEA/CESTA, 15 Avenue des Sablières CS 60001, 33116 Le Barp cedex, France
Pierre-Henri Maire*
Affiliation:
CEA/CESTA, 15 Avenue des Sablières CS 60001, 33116 Le Barp cedex, France
Rémi Abgrall*
Affiliation:
Institüt für Mathematik, Universität Zürich, CH-8057 Zürich, Switzerland
*
Corresponding author.Email:[email protected]
Get access

Abstract

We present a finite volume based cell-centered method for solving diffusion equations on three-dimensional unstructured grids with general tensor conduction. Our main motivation concerns the numerical simulation of the coupling between fluid flows and heat transfers. The corresponding numerical scheme is characterized by cell-centered unknowns and a local stencil. Namely, the scheme results in a global sparse diffusion matrix, which couples only the cell-centered unknowns. The space discretization relies on the partition of polyhedral cells into sub-cells and on the partition of cell faces into sub-faces. It is characterized by the introduction of sub-face normal fluxes and sub-face temperatures, which are auxiliary unknowns. A sub-cellbased variational formulation of the constitutive Fourier law allows to construct an explicit approximation of the sub-face normal heat fluxes in terms of the cell-centered temperature and the adjacent sub-face temperatures. The elimination of the sub-face temperatures with respect to the cell-centered temperatures is achieved locally at each node by solving a small and sparse linear system. This systemis obtained by enforcing the continuity condition of the normal heat flux across each sub-cell interface impinging at the node under consideration. The parallel implementation of the numerical algorithm and its efficiency are described and analyzed. The accuracy and the robustness of the proposed finite volumemethod are assessed bymeans of various numerical test cases.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[2]Aavatsmark, I., Barkve, T., Boe, O., and Mannseth, T.Discretization on unstructured grids for inhomogeneous, anistropic media. Part I: derivation of the methods. SIAM J. Sci. Comput., 19:17001716, 1998.Google Scholar
[3]Aavatsmark, I., Barkve, T., Boe, O., and Mannseth, T.Discretization on unstructured grids for inhomogeneous, anistropic media. Part II: discussion and numerical results. SIAM J. Sci. Comput., 19:17171736, 1998.Google Scholar
[4]Aavatsmark, I., Barkve, T., and Mannseth, T.Control volume discretization methods for 3D quadrilateral grids in inhomogeneous, anisotropic reservoirs. SPE J., pages 146154, 1998.Google Scholar
[5]Aavatsmark, I., Eigestad, G. T., Heimsund, B.-O., Mallison, B. T., Nordbotten, J. M., and Øian, E.A new finite volume approach to efficient discretization on challenging grids. In Proceedings of the SPE International Reservoir Simulation Symposium, number SPE 106435, Houston, USA, 2007.Google Scholar
[6]Aavvatsmark, I., Eigestad, G. T., Klausen, R. A., Wheeler, M. F., and Yotov, I.Convergence of a symmetric MPFA method on quadrilateral grids. Technical Report TR-MATH 0514, University of Pittsburgh, 2005.Google Scholar
[7]Agelas, L. and Masson, R.Convergence of the finite volume mpfa o scheme for heterogeneous anisotropic diffusion problems on general meshes. Comptes Rendus Mathematique, 346:10071012, 2008.Google Scholar
[8]Amdahl, G.Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. AFIPS Conference Proceedings, (30):483485, 1967.Google Scholar
[9]Balay, S., Brown, J., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H.PETSc Web page, 2012. yvailable at http: //www .mcs. anl.gov/ petsc.Google Scholar
[10]Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H.PETSc users manual. Technical Report ANL-95/11 -Revision 3.3, Argonne National Laboratory, 2012.Google Scholar
[11]Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.Efficient management of parallelism in object oriented numerical software libraries. In Arge, E., Bruaset, A. M., and Langtangen, H. P., editors, Modern Software Tools in Scientific Computing, pages 163202. spirkhauser Press, 1997.CrossRefGoogle Scholar
[12]Bianchi, D., Nasuti, F., and Martelli, E.Navier-Stokes Simulations of Hypersonic Flows with Coupled Graphite Ablation. Journal of Spacecraft and Rockets, 47(4), 2010.Google Scholar
[13]Breil, J. and Maire, P.-H.A cell-centered diffusion scheme on two-dimensional unstructured meshes. J. Comp. Phys., 224(2):785823, 2007.CrossRefGoogle Scholar
[14]Brezzi, F., Lipnikov, K., Shashkov, M., and Simoncini, V.A new discretization methodology fro diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg., 196:36823692, 2007.Google Scholar
[15]Burton, D. E.Multidimensional Discretization of Conservation Laws for Unstructured Polyhedral Grids. Technical Report UCRL-JC-118306, Lawrence Livermore National Laboratory, 1994.Google Scholar
[16]Domelovo, K. and Omnes, P.A finite volume for the laplace equation on almost arbitrary two-dimensional grids. Mathematical Modelling and Numerical Analysis, 39(6):12031249, 2005.Google Scholar
[17]Geuzaine, C. and Remacle, J.-F.Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):13091331, 2009.CrossRefGoogle Scholar
[18]Gunasekera, D., Childs, P., Herring, J., and Cox, J.A multi-point flux discretization scheme for general polyhedral grids. In Proceedings of the SPE International Oil and Gas Conference and Exhibition in China, number SPE 48855, Beijing, China, 1998.Google Scholar
[19]Hermeline, F.A finite volume method for the approximation of diffusion operators on distorded meshes. J. Comp. Phys., 160:481499, 2000.Google Scholar
[20]Hermeline, F.Approximation of 2-d and 3-d diffusion operators with variable full tensor coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Engrg., 196:24972526, 2007.Google Scholar
[21]Hermeline, F.A finite volume method for approximating 3D diffusion operators on general meshes. J. Comp. Phys., 228:57635786, 2009.CrossRefGoogle Scholar
[22]Hermeline, F.An point sur les methodes DDFV, 2010. ydvanced methods for the diffusion equation on general meshes; Universite Pierre et Marie Curie, Paris France, July 2010; available at http://www.ann.jussieu.fr/~despres/WEB/Talks/hermeline.pdf.Google Scholar
[23]Hyman, J., Morel, J.E., Shashkov, M., and Steinberg, S.Mimetic finite difference methods for diffusion equations. Computational Geosciences, 6:333352, 2002.Google Scholar
[24]Hyman, J., Shashkov, M., and Steinberg, S.The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comp. Phys., 132:130148, 1997.Google Scholar
[25]Lipnikov, K., Morel, J. E., and Shashkov, M.Mimetic finite difference methods for diffusion equations on non-othogonal non-conformal meshes. J. Comp. Phys., 199:589597, 2004.Google Scholar
[26]Lipnikov, K., Shashkov, M., and Svyatskiy, D.The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. J. Comp. Phys., 211:473491, 2006.Google Scholar
[27]Lipnikov, K., Shashkov, M., and Yotov, I.Local flux mimetic finite difference methods. Numerische Mathematik, 112(1):115—152, 2009.Google Scholar
[28]Maire, P.-H. and Breil, J.A high-order finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids. J. Comp. Phys., 224(2):785823, 2011.Google Scholar
[29]Morel, J. E., Roberts, R. M., and Shashkov, M.A local support-operators diffusion discretization scheme for quadrilateral r-z meshes. J. Comp. Phys., 144:1751, 1998.Google Scholar
[30]Nakajima, K., Nakamura, H., and Tanahashi, T.Qarallel iterative solvers with localized ilu preconditioning. In Hertzberger, Bob and Sloot, Peter, editors, High-Performance Computing and Networking, volume 1225 of Lecture Notes in Computer Science, pages 342350. sppringer Berlin Heidelberg, 1997.Google Scholar
[31]Oden, J. T., Babuska, I., and Baumann, C. E.A Discontinuous hp Finite Element Method for Diffusion problems. J. Comp. Phys., 146:491519, 1998.CrossRefGoogle Scholar
[32]Pal, M. and Edwards, M. G.Quasi monotonic continuous darcy-flux approximation for general 3-d gids on any element type. In Proceedings of the SPE International Reservoir Simu-lation Symposium, number SPE 106486, Houston, USA, 2007.Google Scholar
[33]Pellegrini, F. Scotch Web page, 2012. yvailable at https://gforge.inria.fr/projects/scotch/.Google Scholar
[34]Potier, C. Le. Schémas volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structures. Comptes Rendus Mathematique, 340:921926, 2005.Google Scholar
[35]Rieben, R. and White, D.Verification of high-order mixed finite element solution of transient magnetic diffusion problems. IEEE Transactions on Magnetics, 42(1):2539, 2006.Google Scholar
[36]Shashkov, M. and Steinberg, S.Support-Operator Finite-Difference Algorithms for General Elliptic Problems. J. Comp. Phys., 118:131151, 1995.Google Scholar
[37]Shashkov, M. and Steinberg, S.Solving Diffusion Equations with Rough Coefficients in Rough Grids. J. Comp. Phys., 129:383405, 1996.Google Scholar
[38]Thomas, J.-M. and Trujillo, D.Mixed finite volume methods. International Journal for Numerical Methods in Engineering, 46:13511366, 1999.3.0.CO;2-0>CrossRefGoogle Scholar
[39]van der Vorst, H. A.Bi-CGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. and Stat. Comput., 13(2):631644, 1992.CrossRefGoogle Scholar
[40]Vohralik, M.Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. Mathematical Modelling and Numerical Analysis, 40(2):367391, 2006.Google Scholar
[41]Yang, L. T. and Brent, R. P.The improved BiCGStab method for large and sparse unsymmetric linear systems on parallel distributed memory architectures. In Algorithms and Architectures for Parallel Processing, 2002. yroceedings. Fifth International Conference on, pages 324328, oct. 2002.Google Scholar