Published online by Cambridge University Press: 15 January 2016
In this paper, we introduce and study a new method for solving inverse source problems, through a working model that arises in bioluminescence tomography (BLT). In the BLT problem, one constructs quantitatively the bioluminescence source distribution inside a small animal from optical signals detected on the animal's body surface. The BLT problem possesses strong ill-posedness and often the Tikhonov regularization is used to obtain stable approximate solutions. In conventional Tikhonov regularization, it is crucial to choose a proper regularization parameter for trade off between the accuracy and stability of approximate solutions. The new method is based on a combination of the boundary condition and the boundary measurement in a parameter-dependent single complex Robin boundary condition, followed by the Tikhonov regularization. By properly adjusting the parameter in the Robin boundary condition, we achieve two important properties for our new method: first, the regularized solutions are uniformly stable with respect to the regularization parameter so that the regularization parameter can be chosen based solely on the consideration of the solution accuracy; second, the convergence order of the regularized solutions reaches one with respect to the noise level. Then, the finite element method is used to compute numerical solutions and a new finite element error estimate is derived for discrete solutions. These results improve related results found in the existing literature. Several numerical examples are provided to illustrate the theoretical results.